Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 July 2025 | Story Martinette Brits | Photo Kaleidoscope Studios
Michael von Maltitz
Prof Michael von Maltitz challenges current science education paradigms at the inaugural NAS Research Conference, urging a shift from grade-driven learning to fostering critical thinking, curiosity, and human intelligence in the era of AI and the Fourth Industrial Revolution.

In his keynote address at the inaugural NAS Research Conference on 1 July 2025, Prof Michael von Maltitz delivered a wide-ranging and compelling critique of the current state of science education. Speaking to an audience of researchers and academics, he challenged assumptions about learning, assessment, and the role of artificial intelligence (AI) in higher education – offering both caution and practical guidance.

Prof Von Maltitz – from the Department of Mathematical Statistics and Actuarial Science at the University of the Free State (UFS) – opened with an overview of the industrial revolutions leading up to the current Fourth Industrial Revolution, characterised by artificial intelligence, connectivity, and data-driven automation. He warned against remaining entrenched in this phase of development, arguing that AI, while powerful, is not truly intelligent. “AI … is … artificial,” he said. “It is based on brute-forcing very large numbers of very basic operations at blazing speeds, linking external inputs to stored information. And so, it’s not intelligent. It’s just strong.”

He cautioned that the unchecked use of AI – driven by efficiency, not understanding – risks entrenching systems that prioritise ease and profit over education and well-being. “Everything is profit-driven at the moment. Everything, and I mean … everything. Really. It is this greed that keeps us firmly stuck in the Fourth Industrial Revolution.”

This, he suggested, makes the vision of a Fifth Industrial Revolution both necessary and urgent. The next phase, he argued, should be one that centres on sustainability, equity, human-machine collaboration – and critically – the development of human intelligence and critical thinking. “There should be something here about ‘building human intelligence’ or ‘critical thinking’. This would truly make the Fifth Industrial Revolution about bettering humanity.”

 

When the measure becomes the mission

Central to his address was the idea of ‘broken proxies’ – the phenomenon where a measurement designed to approximate a goal becomes the goal itself, distorting the original purpose. He illustrated this concept using examples ranging from GDP and crime statistics to social media algorithms, before turning to science education. Here, grades and degrees, once indicators of knowledge and progress, have become ends in themselves.

“The only things that are important to students are grades and degrees, because the incentives are linked to grades and degrees, and so, obviously, all effort will go towards grades and degrees.”

Prof Von Maltitz reflected on his own academic journey, describing how he excelled at exams and accumulated qualifications, yet absorbed little meaningful knowledge in the process. “I played the grades game, and nothing stuck in long-term memory, as is the case with many of our students today,” he said. “Why? Well, there were merit bursaries, degrees, and awards up for offer, not for learning, but for performing well.”

This system, he argued, incentivises performance over understanding and leaves students vulnerable to shortcuts – particularly through generative AI. “Under the assumption that rewards are linked to grades and not education, if you offer a student an assessment method that can be gamed … it will be gamed.”

Referencing a recent MIT study, he warned of the cognitive toll of over-reliance on AI. “They showed that, over four months, the AI users’ brains became systematically less active, especially when asked at the end of the study to do a brain-only essay. They had lower brain function in every area. In four months, they had become significantly ‘dumber’ than their counterparts in the other arms of the study.”

 

Rebuilding curiosity and competence

Despite this sobering analysis, the address was not without optimism. Prof Von Maltitz urged delegates to reimagine education by shifting away from content-heavy teaching and rigid assessment structures. He called for a renewed focus on curiosity, conscious incompetence, and lifelong learning. “Are our students able to self-assess, identify weaknesses and gaps in their knowledge bases, seek answers, and build their own learning paths? Are they humble enough to say, ‘I don’t know’, and curious enough to go and find the answers?”

To support this vision, he proposed four practical steps: redefining teaching goals, distilling module content to its essentials, focusing on graduate attributes such as critical thinking and communication, and reassessing how learning is measured. He encouraged alternatives to traditional exams, including portfolios, interviews, peer assessment, and real-world problem solving.

“We don’t have to pretend to teach students everything in a particular field – but rather we show them what is out there to be learned,” he said.

“Education should not be about teaching everything,” he concluded, “but about showing students what can be known, how to learn, and where to go next.”

 

About Prof Von Maltitz

Prof Von Maltitz is Associate Professor in the UFS Department of Mathematical Statistics and Actuarial Science. He has a long-standing connection with the university, having been a student at the UFS since the start of his BSc, which he completed with distinction in 2003. Over the following years, he obtained a BCom Honours in 2004, MCom in Economics in 2005, BSc Honours in Mathematical Statistics in 2006, MSc in Mathematical Statistics in 2007, and completed his PhD in 2015 while already lecturing.

His research interests span statistics education, sequential regression multiple imputation, incomplete data, and multivariate statistics. He is also known for his strong focus on student engagement and the re-engineering of teaching and learning. His extensive contributions to the field have been recognised through multiple awards for excellence in education.

News Archive

Chemistry gets substantial grants
2013-06-10

 

At the experimental setup of the high temperature reduction oven for research in heterogeneous catalysis are, front from left: Maretha Serdyn (MNS Cluster prestige PhD bursar), Nceba Magqi (Sasol employee busy with his MSc in Chemistry) and Dr Alice Brink (Formal MNS Cluster postdoctoral fellow and lecturer in Inorganic Chemistry); back Profs Jannie Swarts (Head: Physical Chemistry), André Roodt, and Ben Bezuidenhoudt (Sasol Professor in Organic and Process Chemistry).
10 June 2013

Three research groups in the Department of Chemistry received substantial grants to the value of R4,55 million. The funding includes bursaries for students and post-doctoral fellows, mobility grants, running costs and equipment support, as well as dedicated funds for two young scientists in the UFS Prestige Scholar Programme, Drs Lizette Erasmus and Alice Brink.

The funding comes from Sasol, the THRIP programme of the National Research Foundation (NRF) and PetLabs Pharmaceuticals for the overarching thrust in Organic Synthesis, Homogeneous and Heterogeneous Catalysis. The programme has a broad focuse on different fundamental and applied aspects of process chemistry. Research groups of Profs Andreas Roodt (Inorganic), Jannie Swarts (Physical) and Ben Bezuidenhoudt (Organic / Process), principal members of the focus area of (Green) Petrochemicals in the Materials and Nanosciences Strategic Research Cluster (MNS Cluster) will benefit from the grant.

This funding was granted based on the continued and high-level outputs by the groups, which resulted in more than 40 papers featuring in international chemistry publications in merely the past year. A few papers also appeared in the top experimental inorganic chemistry journal from the American Chemical Society, Inorganic Chemistry. These high-impact papers address important issues in catalysis under the UFS Material and Nanosciences Research Cluster initiative, as well as other aspects of fundamental chemistry, but with an applied approach and focus.

Prof Andreas Roodt, Distinguished Professor and Chairperson of the Department of Chemistry, said the grants will enable the three research groups to move forward in their respective research areas associated with petrochemicals and other projects, and enable additional students in the department to benefit from it. It will also ensure that these groups can continue and maintain their research on different molecular and nano-scale materials. Current experiments include conversions under extremely high gas pressures (typical 100 times that in motor car tyres). This takes place at the molecular level and at preselected nano-surfaces, to convert cheaper feed-stream starting materials into higher value-added products for use as special additives in gasoline and other speciality chemicals.

The funding support forms part of the Hub-and-Spoke initiative at Sasol under which certain universities and specifically the UFS Department of Chemistry have been identified for strategic support for research and development. The department and the UFS gratefully acknowledge this continued and generous support from all parties concerned.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept