Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 June 2025 | Story Leonie Bolleurs | Photo Supplied
Dr Lucia Meko
Dr Lucia Meko believes that face-to-face engagement helps students become more empathetic, culturally aware health professionals.

In South Africa, the streets often tell stories of contrasts where wealth and poverty, tradition and modernity, and diverse cultures meet at the same intersection. It is a place where neighbours may speak different languages, worship in different ways, and sit down to very different meals. These everyday differences do not just influence how people live – they shape what ends up on their plates.

According to Dr Lucia Meko, Senior Lecturer and Head of the Department of Nutrition and Dietetics at the University of the Free State (UFS), dietitians play an important role in such a diverse landscape. “Their mission is to empower individuals and communities to make informed, healthy food choices that support long-term well-being. According to the Health Professions Council of South Africa (HPCSA), dietitians are trained to provide personalised nutrition counselling aimed at preventing and managing diet-related diseases,” she says.

“This means that whether someone is dealing with diabetes, high blood pressure, or simply trying to improve their eating habits, a dietitian can offer guidance tailored to their unique needs and circumstances.”

However, Dr Meko believes that while theory is important, many students only truly understand the reality of their future clients when they experience it first-hand. At the UFS, students do not have to wait until the end of their degrees to gain this insight. Community service learning begins in their very first year.

This approach immerses students in the communities they will eventually serve, offering a practical education that goes beyond textbooks. By working directly with communities, students gain a deeper appreciation of the challenges individuals face in making healthy food choices,” she says.

“These experiences help shape well-rounded professionals who are not only knowledgeable but also empathetic and culturally aware,” adds Dr Meko.

Unlike traditional volunteering, this is structured learning with clear outcomes. Students apply classroom theory to real-world issues while simultaneously giving back. Through this process, students develop critical thinking, cultural competence, and the ability to communicate health information in ways that are relevant and respectful,” she explains.

 

What really happens on the ground

To understand what this looks like in practice, Dr Meko points to a research study conducted by the department. It examines the experiences of fourth-year students during a Community Nutrition Module internship. This internship is one of eight work-integrated learning (WIL) components in the module.

In this particular placement, students work in Ward 51 in Mangaung, visiting homes and engaging directly with residents. During each visit, they profile the community member’s demographics, measure nutritional status (using weight and height), and assess dietary patterns. Afterward, they offer tailored dietary counselling.

Beyond individual visits, students also explore the broader food environment: visiting supermarkets, vegetable gardens, early childhood centres, and street vendors all form part of their learning.

Importantly, this programme is not one-sided. Feedback from both students and community members is gathered to improve the experience and assess its impact.

So far, early findings are promising. Students not only learned; they were transformed. Interestingly, students mostly showed appreciation for their own privileges in comparison to the disadvantaged communities they visited,” says Dr Meko. One student reflected: “It humbled me and made me very grateful for all that I have, because I think we really lose sight of that sometimes.”

After a township tour, another student admitted: This was very insightful, as we often have stereotypes about the way people live and what people eat, simply because of where they live.”

In a cooking activity, students were challenged to apply dietary guidelines in real kitchens. The outcome? A deeper understanding of the barriers faced by many. “Dietetic guidelines we have given to some patients were really put into perspective, as cooking with less salt is not as easy as we think,” says Dr Meko, quoting student feedback.

Some even used what they learned in other placements. One student took a simple grocery list she developed during her internship to the hospital setting: “It is the most practical way to influence someone to shop differently.”

Others were inspired to continue working in food access. “I was impressed with the size of the vegetable gardens and was also inspired to be part of projects like these in the future,” shared another student.

Perhaps one of the most powerful observations came from a student who said: “I feel empowered but also sad to see that this is how most of the country is living and that we can make a difference, no matter how small.”

 

A lasting impact for both student and community

For Dr Meko, this is exactly what service learning should achieve. “While lectures and textbooks can teach the theory behind intercultural competence, it’s the face-to-face interactions – listening to people’s stories, understanding their struggles, and working alongside them – that truly bring those lessons to life.”

She adds that this kind of learning also builds stronger, more respectful relationships between the university and the communities it serves. “It fosters partnerships built on mutual respect, shared goals, and the exchange of knowledge and resources – locally and beyond.”

Community service learning is not just a tick-box exercise. In the UFS Department of Nutrition and Dietetics, it is a meaningful bridge between knowledge and empathy, between theory and reality, and – most importantly – between future dietitians and the people whose lives they hope to improve.

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept