Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 June 2025 | Story Leonie Bolleurs | Photo Supplied
Dr Lucia Meko
Dr Lucia Meko believes that face-to-face engagement helps students become more empathetic, culturally aware health professionals.

In South Africa, the streets often tell stories of contrasts where wealth and poverty, tradition and modernity, and diverse cultures meet at the same intersection. It is a place where neighbours may speak different languages, worship in different ways, and sit down to very different meals. These everyday differences do not just influence how people live – they shape what ends up on their plates.

According to Dr Lucia Meko, Senior Lecturer and Head of the Department of Nutrition and Dietetics at the University of the Free State (UFS), dietitians play an important role in such a diverse landscape. “Their mission is to empower individuals and communities to make informed, healthy food choices that support long-term well-being. According to the Health Professions Council of South Africa (HPCSA), dietitians are trained to provide personalised nutrition counselling aimed at preventing and managing diet-related diseases,” she says.

“This means that whether someone is dealing with diabetes, high blood pressure, or simply trying to improve their eating habits, a dietitian can offer guidance tailored to their unique needs and circumstances.”

However, Dr Meko believes that while theory is important, many students only truly understand the reality of their future clients when they experience it first-hand. At the UFS, students do not have to wait until the end of their degrees to gain this insight. Community service learning begins in their very first year.

This approach immerses students in the communities they will eventually serve, offering a practical education that goes beyond textbooks. By working directly with communities, students gain a deeper appreciation of the challenges individuals face in making healthy food choices,” she says.

“These experiences help shape well-rounded professionals who are not only knowledgeable but also empathetic and culturally aware,” adds Dr Meko.

Unlike traditional volunteering, this is structured learning with clear outcomes. Students apply classroom theory to real-world issues while simultaneously giving back. Through this process, students develop critical thinking, cultural competence, and the ability to communicate health information in ways that are relevant and respectful,” she explains.

 

What really happens on the ground

To understand what this looks like in practice, Dr Meko points to a research study conducted by the department. It examines the experiences of fourth-year students during a Community Nutrition Module internship. This internship is one of eight work-integrated learning (WIL) components in the module.

In this particular placement, students work in Ward 51 in Mangaung, visiting homes and engaging directly with residents. During each visit, they profile the community member’s demographics, measure nutritional status (using weight and height), and assess dietary patterns. Afterward, they offer tailored dietary counselling.

Beyond individual visits, students also explore the broader food environment: visiting supermarkets, vegetable gardens, early childhood centres, and street vendors all form part of their learning.

Importantly, this programme is not one-sided. Feedback from both students and community members is gathered to improve the experience and assess its impact.

So far, early findings are promising. Students not only learned; they were transformed. Interestingly, students mostly showed appreciation for their own privileges in comparison to the disadvantaged communities they visited,” says Dr Meko. One student reflected: “It humbled me and made me very grateful for all that I have, because I think we really lose sight of that sometimes.”

After a township tour, another student admitted: This was very insightful, as we often have stereotypes about the way people live and what people eat, simply because of where they live.”

In a cooking activity, students were challenged to apply dietary guidelines in real kitchens. The outcome? A deeper understanding of the barriers faced by many. “Dietetic guidelines we have given to some patients were really put into perspective, as cooking with less salt is not as easy as we think,” says Dr Meko, quoting student feedback.

Some even used what they learned in other placements. One student took a simple grocery list she developed during her internship to the hospital setting: “It is the most practical way to influence someone to shop differently.”

Others were inspired to continue working in food access. “I was impressed with the size of the vegetable gardens and was also inspired to be part of projects like these in the future,” shared another student.

Perhaps one of the most powerful observations came from a student who said: “I feel empowered but also sad to see that this is how most of the country is living and that we can make a difference, no matter how small.”

 

A lasting impact for both student and community

For Dr Meko, this is exactly what service learning should achieve. “While lectures and textbooks can teach the theory behind intercultural competence, it’s the face-to-face interactions – listening to people’s stories, understanding their struggles, and working alongside them – that truly bring those lessons to life.”

She adds that this kind of learning also builds stronger, more respectful relationships between the university and the communities it serves. “It fosters partnerships built on mutual respect, shared goals, and the exchange of knowledge and resources – locally and beyond.”

Community service learning is not just a tick-box exercise. In the UFS Department of Nutrition and Dietetics, it is a meaningful bridge between knowledge and empathy, between theory and reality, and – most importantly – between future dietitians and the people whose lives they hope to improve.

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept