Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 June 2025 | Story Lacea Loader | Photo Supplied
Prof Philippe Burger
Prof Philippe Burger, Dean of the Faculty of Economic and Management Sciences at the University of the Free State, appointed to the DHET Expert Panel on University Fees to help shape the future of tuition affordability and sustainability in South Africa.

Prof Philippe Burger, Dean: Faculty of Economic and Management Sciences at the University of the Free State (UFS), has been appointed as a member of a team that will represent Universities South Africa (USAf) in a DHET Expert Panel on University Fees. The panel, which comprises representatives from USAf, the DHET, and NSFAS, focuses on the affordability of tuition fees and the future sustainability of the sector, looking at potential solutions for tuition fees beyond the 2025 academic year. 

With more than 30 years of experience in higher education, mostly in management positions, Prof Burger understands the sector well. Combined with his expertise in macroeconomics, fiscal policy, and public sector economics and finance, he is uniquely positioned to make a significant contribution to this task team.

 

Universities matter

Despite the high national unemployment rate (32%), Prof Burger points out that unemployment is largely a problem of the unskilled. “The unemployment rate of people with university degrees is about 12%, much lower than the national average,” he notes. “South Africa has a large shortage of skilled labour, which it needs to grow the economy and improve lives.” He trusts that universities can fill this void, in addition to providing the thought leaders needed to take the country forward.

Although universities in South Africa are experiencing financial pressures, they continue to lift thousands of people to better lives each year. Universities make a profoundly positive contribution to the country and its population, and Prof Burger believes that once the public is fully aware of this, it will support broader discussions in favour of higher education.

 

The challenge

Universities face several cost pressures that are causing an increase in cost at a higher rate than consumer inflation, Prof Burger explains. “For instance, we buy equipment, software, and journal subscriptions that are all priced in US dollars. Affected by the exchange rate, these types of expenses have increased by much more than the price of consumer goods in South Africa over the past ten years.” According to Prof Burger, increased operational costs, coupled with constrained university income, necessitate a model that will provide universities with enough income to cover their costs while delivering quality education in the long run. 

 

The solution

“There is an argument for universities to become more efficient, and there is certainly room for universities to look at their cost structures, but there is also a limit to what we can do,” Prof Burger says. “It is important to stress that we cannot talk about the sustainability of universities and not contextualise it within a framework that seeks to deliver quality learning, teaching, and research. In the absence of that quality, we will not be able to address the skills shortages and thought leadership that the country needs. And that is the sustainability we need to talk about – the sustainability of quality education and scholarship,” he concludes. 

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept