Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 June 2025 | Story Lacea Loader | Photo Supplied
Prof Philippe Burger
Prof Philippe Burger, Dean of the Faculty of Economic and Management Sciences at the University of the Free State, appointed to the DHET Expert Panel on University Fees to help shape the future of tuition affordability and sustainability in South Africa.

Prof Philippe Burger, Dean: Faculty of Economic and Management Sciences at the University of the Free State (UFS), has been appointed as a member of a team that will represent Universities South Africa (USAf) in a DHET Expert Panel on University Fees. The panel, which comprises representatives from USAf, the DHET, and NSFAS, focuses on the affordability of tuition fees and the future sustainability of the sector, looking at potential solutions for tuition fees beyond the 2025 academic year. 

With more than 30 years of experience in higher education, mostly in management positions, Prof Burger understands the sector well. Combined with his expertise in macroeconomics, fiscal policy, and public sector economics and finance, he is uniquely positioned to make a significant contribution to this task team.

 

Universities matter

Despite the high national unemployment rate (32%), Prof Burger points out that unemployment is largely a problem of the unskilled. “The unemployment rate of people with university degrees is about 12%, much lower than the national average,” he notes. “South Africa has a large shortage of skilled labour, which it needs to grow the economy and improve lives.” He trusts that universities can fill this void, in addition to providing the thought leaders needed to take the country forward.

Although universities in South Africa are experiencing financial pressures, they continue to lift thousands of people to better lives each year. Universities make a profoundly positive contribution to the country and its population, and Prof Burger believes that once the public is fully aware of this, it will support broader discussions in favour of higher education.

 

The challenge

Universities face several cost pressures that are causing an increase in cost at a higher rate than consumer inflation, Prof Burger explains. “For instance, we buy equipment, software, and journal subscriptions that are all priced in US dollars. Affected by the exchange rate, these types of expenses have increased by much more than the price of consumer goods in South Africa over the past ten years.” According to Prof Burger, increased operational costs, coupled with constrained university income, necessitate a model that will provide universities with enough income to cover their costs while delivering quality education in the long run. 

 

The solution

“There is an argument for universities to become more efficient, and there is certainly room for universities to look at their cost structures, but there is also a limit to what we can do,” Prof Burger says. “It is important to stress that we cannot talk about the sustainability of universities and not contextualise it within a framework that seeks to deliver quality learning, teaching, and research. In the absence of that quality, we will not be able to address the skills shortages and thought leadership that the country needs. And that is the sustainability we need to talk about – the sustainability of quality education and scholarship,” he concludes. 

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept