Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 June 2025 | Story University of the Free State | Photo Supplied
Ecological Engineering
Dr Jacques Maritz, Albert van Eck, and Dr Nola Redelinghuys are among the University of the Free State researchers driving an interdisciplinary project that combines social insight, high-performance computing, and ecological engineering to support South Africa’s just energy transition.

The University of the Free State (UFS) is taking bold steps to address the complexities of South Africa’s energy transition by combining expertise across disciplines, innovative technologies such as high-performance computing (HPC), and active student involvement. This forward-thinking approach is positioning the UFS at the forefront of solving real-world challenges linked to renewable energy adoption and social dynamics, while equipping students with future-ready skills.

 

Interdisciplinary solutions for a just energy transition

“Current grand challenges – the pressing societal and scientific problems shaping research at the UFS and globally – require students and researchers to include computational approaches such as modelling, simulations, and large-scale data analysis,” says Dr Jacques Maritz, Head of the Unit for Engineering Sciences at the UFS.

“One such example is in merging social dynamics with energy paradigms – two seemingly different worlds, yet connected via scientific elegance,” says Dr Maritz. Energy decisions, such as shifting to renewables, are shaped by the behaviour of communities, governments, and industries. As a recent response to these challenges, ecological and nature-based engineering sciences at the UFS aim to integrate human activity into nature, while benefiting both via the merging of computation, ecological engineering sciences, nature-based solutions, and data-driven complexity science. 

The UFS’ pioneering project models these complex social-energy relationships to better understand how South Africa can sustainably and justly transition from fossil fuels to renewable energy. This interdisciplinary effort involves researchers and students from physics, sociology, engineering, data science, and mathematical modelling working together to map these interdependencies shaped by economic, political, cultural, and community forces.

For students such as Lurgasho Minnie, a final-year MSc Astrophysics student, this interdisciplinary exposure is transformative. “It has given me a new lens or perspective on approaching and solving problems in my field of research. By approaching challenges from an interdisciplinary point of view, new methods and techniques can be applied to solve challenging problems,” he says.

A crucial part of this research involves modelling dynamic social-energy networks using systems thinking, network analysis, and scenario planning. These tools help simulate interactions between government policies, community behaviour, environmental impacts, and technological innovations, allowing researchers to predict and plan for different future scenarios.

Students are actively shaping this work. The first set of social data was collected by UFS students on the Qwaqwa Campus, with training and support from the Centre for Global Change and Student Affairs. These data-gathering efforts are not only enriching the research but also building students' skills in real-world data collection and analysis.

“One of the study objectives is to inform the development of an awareness campaign about the complexities inherent in transitioning from a predominantly non-renewable to a renewable energy system, firstly aimed at UFS students but ultimately at the broader community,” explains Dr Nola Redelinghuys, Senior Lecturer in Sociology at the UFS.

The research team also hopes to help shape sustainable energy solutions for the university itself, with plans to create a renewable energy supply network that balances energy demand and renewable supply across the UFS campuses.

 

High-performance computing powering new insights 

At the heart of this initiative is the UFS High-Performance Computing (HPC) Unit, which enables researchers to run complex simulations and process vast data sets. The HPC is essential for solving problems that require immense computing power and data storage, and the UFS is making these resources accessible to a growing number of students – even those from non-computational disciplines.

“The eResearch and HPC team promotes the development of new skills and knowledge to harness the power of HPC and expand one’s technological abilities to solve problems. The HPC staff must first train a student or researcher to use the system effectively before using their toolsets. Thereafter, students can streamline or even automate specific processes by using a collection of more generic toolsets. Even if not using an HPC daily (or after entering the workforce), the HPC methodologies and toolsets they are exposed to often change how a person approaches future problem sets. Students using the HPC are more likely to share their experiences and are encouraged to assist other students in their department to lessen the burden of entry for newcomers. This broadens the collective knowledge within a department on their toolsets and how to use them effectively,” says Albert van Eck, Director of the UFS HPC.

Students can also learn how to build and configure basic HPC clusters through freely available training materials, opening doors to careers in private cloud hosting, data science, genomics, and other tech industries. By focusing on open-source tools, the UFS ensures that students acquire industry-relevant skills without being locked into specific software vendors.

The project is also laying the groundwork for partnerships with renewable energy companies, technology firms, NGOs, and development agencies. These collaborations will strengthen the UFS’ industry ties and create more work-integrated learning (WIL) opportunities for students.

As part of UFS Vision 130, this project advances academic excellence, societal impact, and inclusivity. By involving diverse staff and students from both the Bloemfontein and Qwaqwa Campuses, it demonstrates the university’s commitment to building a future-ready, skilled, and socially conscious graduate community prepared to tackle South Africa’s energy challenges.

In a country grappling with energy security and the need for a just transition, the UFS’ approach – blending social insight, cutting-edge technology, and student empowerment – offers a valuable model for addressing one of the nation’s most pressing development priorities.

News Archive

Ford foundation funds higher education redesign
2005-06-23

 

The Ford Foundation has pledged a grant of almost R280 000 for redesigning higher education delivery at three campuses in the Free State.

According to Prof Magda Fourie, Vice-Rector: Academic Planning at the University of the Free State (UFS), the three campuses that will be affected by the strategic reconfiguration of higher education delivery are the Qwaqwa campus at Phuthaditjhaba and the Vista campus of the UFS in Bloemfontein and the Welkom campus of the Central University of Technology (CUT).

Prof Fourie says the three campuses were all affected by the restructuring of higher education, in line with the National Plan for Higher Education.

The Qwaqwa campus of the UFS that was part of the former University of the North was incorporated into the UFS in January 2003.  Likewise the Bloemfontein campus of the former Vista University was incorporated into the UFS in January 2004.

The Welkom campus of the CUT was also part of the former Vista University and was incorporated into the CUT in January 2004.

“These incorporations pose a challenge in that we have to think creatively about the best ways of using these three campuses to service the higher education, training, skills development and human resource needs of the Free State,” Prof Fourie said.

“The grant from the Ford Foundation will primarily be used to draw up strategic funding proposals for the three campuses.  The Qwaqwa campus of the UFS is a priority to us given the poverty and unemployment in a largely rural area of the Free State,” said Prof Fourie.

“A detailed consultation process will be undertaken in the Qwaqwa campus sub-region which will hopefully result in a comprehensive and a coherent suite of higher education activities being established on this campus,” said Prof Fourie.

“It is envisaged that the Qwaqwa campus will become a centre of excellence in the area of rural development.  This vision is based on a focused integration of the core functions of a university – teaching, research, and community service – around the issue of rural development,” said Prof Fourie.

Prof Fourie said that various educational offerings including among others short courses, bridging and foundation programmes, and degrees could be offered, with a particular focus on providing courses of relevance to students from the local rural community and students from elsewhere with an interest in focusing on rural development studies.

She said the redesign of the three affected campuses is being managed as a project of the Free State Higher Education Consortium (FSHEC) consisting of all the higher education institutions operating in the Free State.

“The aim of the project is to establish how the Qwaqwa and Vista campuses of the UFS and the Welkom campus of the CUT can be used effectively to meet regional education and training needs, to serve the strategic priorities of the two higher education institutions and contribute to the sustainable development and poverty alleviation of the region,” she said.

The planning for the Vista campus of the UFS is still in an early stage.  “We are looking at the possibility of developing this campus into a hub of education and training opportunities for Bloemfontein and Free State region.  Further plans will be communicated later in the year,” said Prof Fourie.

Media release

Issued by:  Lacea Loader
   Media Representative
   Tel:  (051) 401-2584
   Cell:  083 645 2454
   E-mail:  loaderl.stg@mail.uovs.ac.za

23 June 2005
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept