Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 June 2025 | Story University of the Free State | Photo Supplied
Ecological Engineering
Dr Jacques Maritz, Albert van Eck, and Dr Nola Redelinghuys are among the University of the Free State researchers driving an interdisciplinary project that combines social insight, high-performance computing, and ecological engineering to support South Africa’s just energy transition.

The University of the Free State (UFS) is taking bold steps to address the complexities of South Africa’s energy transition by combining expertise across disciplines, innovative technologies such as high-performance computing (HPC), and active student involvement. This forward-thinking approach is positioning the UFS at the forefront of solving real-world challenges linked to renewable energy adoption and social dynamics, while equipping students with future-ready skills.

 

Interdisciplinary solutions for a just energy transition

“Current grand challenges – the pressing societal and scientific problems shaping research at the UFS and globally – require students and researchers to include computational approaches such as modelling, simulations, and large-scale data analysis,” says Dr Jacques Maritz, Head of the Unit for Engineering Sciences at the UFS.

“One such example is in merging social dynamics with energy paradigms – two seemingly different worlds, yet connected via scientific elegance,” says Dr Maritz. Energy decisions, such as shifting to renewables, are shaped by the behaviour of communities, governments, and industries. As a recent response to these challenges, ecological and nature-based engineering sciences at the UFS aim to integrate human activity into nature, while benefiting both via the merging of computation, ecological engineering sciences, nature-based solutions, and data-driven complexity science. 

The UFS’ pioneering project models these complex social-energy relationships to better understand how South Africa can sustainably and justly transition from fossil fuels to renewable energy. This interdisciplinary effort involves researchers and students from physics, sociology, engineering, data science, and mathematical modelling working together to map these interdependencies shaped by economic, political, cultural, and community forces.

For students such as Lurgasho Minnie, a final-year MSc Astrophysics student, this interdisciplinary exposure is transformative. “It has given me a new lens or perspective on approaching and solving problems in my field of research. By approaching challenges from an interdisciplinary point of view, new methods and techniques can be applied to solve challenging problems,” he says.

A crucial part of this research involves modelling dynamic social-energy networks using systems thinking, network analysis, and scenario planning. These tools help simulate interactions between government policies, community behaviour, environmental impacts, and technological innovations, allowing researchers to predict and plan for different future scenarios.

Students are actively shaping this work. The first set of social data was collected by UFS students on the Qwaqwa Campus, with training and support from the Centre for Global Change and Student Affairs. These data-gathering efforts are not only enriching the research but also building students' skills in real-world data collection and analysis.

“One of the study objectives is to inform the development of an awareness campaign about the complexities inherent in transitioning from a predominantly non-renewable to a renewable energy system, firstly aimed at UFS students but ultimately at the broader community,” explains Dr Nola Redelinghuys, Senior Lecturer in Sociology at the UFS.

The research team also hopes to help shape sustainable energy solutions for the university itself, with plans to create a renewable energy supply network that balances energy demand and renewable supply across the UFS campuses.

 

High-performance computing powering new insights 

At the heart of this initiative is the UFS High-Performance Computing (HPC) Unit, which enables researchers to run complex simulations and process vast data sets. The HPC is essential for solving problems that require immense computing power and data storage, and the UFS is making these resources accessible to a growing number of students – even those from non-computational disciplines.

“The eResearch and HPC team promotes the development of new skills and knowledge to harness the power of HPC and expand one’s technological abilities to solve problems. The HPC staff must first train a student or researcher to use the system effectively before using their toolsets. Thereafter, students can streamline or even automate specific processes by using a collection of more generic toolsets. Even if not using an HPC daily (or after entering the workforce), the HPC methodologies and toolsets they are exposed to often change how a person approaches future problem sets. Students using the HPC are more likely to share their experiences and are encouraged to assist other students in their department to lessen the burden of entry for newcomers. This broadens the collective knowledge within a department on their toolsets and how to use them effectively,” says Albert van Eck, Director of the UFS HPC.

Students can also learn how to build and configure basic HPC clusters through freely available training materials, opening doors to careers in private cloud hosting, data science, genomics, and other tech industries. By focusing on open-source tools, the UFS ensures that students acquire industry-relevant skills without being locked into specific software vendors.

The project is also laying the groundwork for partnerships with renewable energy companies, technology firms, NGOs, and development agencies. These collaborations will strengthen the UFS’ industry ties and create more work-integrated learning (WIL) opportunities for students.

As part of UFS Vision 130, this project advances academic excellence, societal impact, and inclusivity. By involving diverse staff and students from both the Bloemfontein and Qwaqwa Campuses, it demonstrates the university’s commitment to building a future-ready, skilled, and socially conscious graduate community prepared to tackle South Africa’s energy challenges.

In a country grappling with energy security and the need for a just transition, the UFS’ approach – blending social insight, cutting-edge technology, and student empowerment – offers a valuable model for addressing one of the nation’s most pressing development priorities.

News Archive

Central SRC constitution for UFS approved by Council
2005-07-20

University of the Free State Fact Sheet

1. The Council of the University of the Free State (UFS) on 10 June 2005 unanimously approved the establishment of a Central Student Representative Council (CSRC)  to constitute a legitimate basis for the democratic participation of students of all three of its campuses in the governance of the university.

2. In a major breakthrough and transformation step for student governance, the Central SRC will include representatives of the main campus in Bloemfontein, the Vista Bloemfontein campus and the Qwaqwa campus of the UFS.

3. The need to establish the Central SRC follows the incorporation of the Qwaqwa campus into the UFS in January 2003 and the incorporation of the Vista campus in Bloemfontein into the UFS in January 2004.

4. The constitution of the Central SRC is the outcome of a consensus reached during a lengthy process of negotiation between the SRCs of the three UFS campuses, indirectly involving diverse student formations such as Sasco, ANCYL, YCL, Pasma, SASO, SADESMO, AZASCO, SCO, HEREXVII, KovsieAlliance, ACDP, etc. Independent constitutional and political experts facilitated key parts of the negotiation process.

5. In this process, the UFS management went out of its way to ensure the participation of all student formations, especially Sasco and the ANC Youth League, as well as the duly elected SRC officials of the three campuses.

6. With the establishment of a Central SRC, the UFS has adopted a federal student governance model whereby the CSRC is the highest representative student body on matters of common concern for all students. The three campuses of the UFS will retain SRC structures for each campus with powers and responsibilities for matters affecting the particular campus.

7. The central SRC will have 12 members made up of delegates of the different campus SRCs, including the presidents of these three SRCs. In total, the main campus will have 5 representatives, the Qwaqwa campus will have 4 representatives and the Vista campus will have 3 representatives. This ratio ensures a strong voice for the smaller campuses in the central SRC.

8. This arrangement will be reviewed after a year to make allowance for the phasing out of undergraduate (pipeline) students at the Vista campus, as was agreed in the negotiations preceding the incorporation of that campus into the UFS.

9. From these 12 members a central SRC president will be chosen on a quarterly basis to represent the general student body at Executive Management, Senate and Council.

10. The historic official inauguration of the first Central SRC is scheduled to take place in early August 2005.

11. This event, like the adoption of a broadly negotiated new constitution for the main campus SRC, represents a  breakthrough in that all three campus SRCs delegations and all relevant student organizations have been part of the process and have accepted the outcome of the process.

20 July 2005

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept