Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 June 2025 | Story University of the Free State | Photo Supplied
Ecological Engineering
Dr Jacques Maritz, Albert van Eck, and Dr Nola Redelinghuys are among the University of the Free State researchers driving an interdisciplinary project that combines social insight, high-performance computing, and ecological engineering to support South Africa’s just energy transition.

The University of the Free State (UFS) is taking bold steps to address the complexities of South Africa’s energy transition by combining expertise across disciplines, innovative technologies such as high-performance computing (HPC), and active student involvement. This forward-thinking approach is positioning the UFS at the forefront of solving real-world challenges linked to renewable energy adoption and social dynamics, while equipping students with future-ready skills.

 

Interdisciplinary solutions for a just energy transition

“Current grand challenges – the pressing societal and scientific problems shaping research at the UFS and globally – require students and researchers to include computational approaches such as modelling, simulations, and large-scale data analysis,” says Dr Jacques Maritz, Head of the Unit for Engineering Sciences at the UFS.

“One such example is in merging social dynamics with energy paradigms – two seemingly different worlds, yet connected via scientific elegance,” says Dr Maritz. Energy decisions, such as shifting to renewables, are shaped by the behaviour of communities, governments, and industries. As a recent response to these challenges, ecological and nature-based engineering sciences at the UFS aim to integrate human activity into nature, while benefiting both via the merging of computation, ecological engineering sciences, nature-based solutions, and data-driven complexity science. 

The UFS’ pioneering project models these complex social-energy relationships to better understand how South Africa can sustainably and justly transition from fossil fuels to renewable energy. This interdisciplinary effort involves researchers and students from physics, sociology, engineering, data science, and mathematical modelling working together to map these interdependencies shaped by economic, political, cultural, and community forces.

For students such as Lurgasho Minnie, a final-year MSc Astrophysics student, this interdisciplinary exposure is transformative. “It has given me a new lens or perspective on approaching and solving problems in my field of research. By approaching challenges from an interdisciplinary point of view, new methods and techniques can be applied to solve challenging problems,” he says.

A crucial part of this research involves modelling dynamic social-energy networks using systems thinking, network analysis, and scenario planning. These tools help simulate interactions between government policies, community behaviour, environmental impacts, and technological innovations, allowing researchers to predict and plan for different future scenarios.

Students are actively shaping this work. The first set of social data was collected by UFS students on the Qwaqwa Campus, with training and support from the Centre for Global Change and Student Affairs. These data-gathering efforts are not only enriching the research but also building students' skills in real-world data collection and analysis.

“One of the study objectives is to inform the development of an awareness campaign about the complexities inherent in transitioning from a predominantly non-renewable to a renewable energy system, firstly aimed at UFS students but ultimately at the broader community,” explains Dr Nola Redelinghuys, Senior Lecturer in Sociology at the UFS.

The research team also hopes to help shape sustainable energy solutions for the university itself, with plans to create a renewable energy supply network that balances energy demand and renewable supply across the UFS campuses.

 

High-performance computing powering new insights 

At the heart of this initiative is the UFS High-Performance Computing (HPC) Unit, which enables researchers to run complex simulations and process vast data sets. The HPC is essential for solving problems that require immense computing power and data storage, and the UFS is making these resources accessible to a growing number of students – even those from non-computational disciplines.

“The eResearch and HPC team promotes the development of new skills and knowledge to harness the power of HPC and expand one’s technological abilities to solve problems. The HPC staff must first train a student or researcher to use the system effectively before using their toolsets. Thereafter, students can streamline or even automate specific processes by using a collection of more generic toolsets. Even if not using an HPC daily (or after entering the workforce), the HPC methodologies and toolsets they are exposed to often change how a person approaches future problem sets. Students using the HPC are more likely to share their experiences and are encouraged to assist other students in their department to lessen the burden of entry for newcomers. This broadens the collective knowledge within a department on their toolsets and how to use them effectively,” says Albert van Eck, Director of the UFS HPC.

Students can also learn how to build and configure basic HPC clusters through freely available training materials, opening doors to careers in private cloud hosting, data science, genomics, and other tech industries. By focusing on open-source tools, the UFS ensures that students acquire industry-relevant skills without being locked into specific software vendors.

The project is also laying the groundwork for partnerships with renewable energy companies, technology firms, NGOs, and development agencies. These collaborations will strengthen the UFS’ industry ties and create more work-integrated learning (WIL) opportunities for students.

As part of UFS Vision 130, this project advances academic excellence, societal impact, and inclusivity. By involving diverse staff and students from both the Bloemfontein and Qwaqwa Campuses, it demonstrates the university’s commitment to building a future-ready, skilled, and socially conscious graduate community prepared to tackle South Africa’s energy challenges.

In a country grappling with energy security and the need for a just transition, the UFS’ approach – blending social insight, cutting-edge technology, and student empowerment – offers a valuable model for addressing one of the nation’s most pressing development priorities.

News Archive

Chemistry gets substantial grants
2013-06-10

 

At the experimental setup of the high temperature reduction oven for research in heterogeneous catalysis are, front from left: Maretha Serdyn (MNS Cluster prestige PhD bursar), Nceba Magqi (Sasol employee busy with his MSc in Chemistry) and Dr Alice Brink (Formal MNS Cluster postdoctoral fellow and lecturer in Inorganic Chemistry); back Profs Jannie Swarts (Head: Physical Chemistry), André Roodt, and Ben Bezuidenhoudt (Sasol Professor in Organic and Process Chemistry).
10 June 2013

Three research groups in the Department of Chemistry received substantial grants to the value of R4,55 million. The funding includes bursaries for students and post-doctoral fellows, mobility grants, running costs and equipment support, as well as dedicated funds for two young scientists in the UFS Prestige Scholar Programme, Drs Lizette Erasmus and Alice Brink.

The funding comes from Sasol, the THRIP programme of the National Research Foundation (NRF) and PetLabs Pharmaceuticals for the overarching thrust in Organic Synthesis, Homogeneous and Heterogeneous Catalysis. The programme has a broad focuse on different fundamental and applied aspects of process chemistry. Research groups of Profs Andreas Roodt (Inorganic), Jannie Swarts (Physical) and Ben Bezuidenhoudt (Organic / Process), principal members of the focus area of (Green) Petrochemicals in the Materials and Nanosciences Strategic Research Cluster (MNS Cluster) will benefit from the grant.

This funding was granted based on the continued and high-level outputs by the groups, which resulted in more than 40 papers featuring in international chemistry publications in merely the past year. A few papers also appeared in the top experimental inorganic chemistry journal from the American Chemical Society, Inorganic Chemistry. These high-impact papers address important issues in catalysis under the UFS Material and Nanosciences Research Cluster initiative, as well as other aspects of fundamental chemistry, but with an applied approach and focus.

Prof Andreas Roodt, Distinguished Professor and Chairperson of the Department of Chemistry, said the grants will enable the three research groups to move forward in their respective research areas associated with petrochemicals and other projects, and enable additional students in the department to benefit from it. It will also ensure that these groups can continue and maintain their research on different molecular and nano-scale materials. Current experiments include conversions under extremely high gas pressures (typical 100 times that in motor car tyres). This takes place at the molecular level and at preselected nano-surfaces, to convert cheaper feed-stream starting materials into higher value-added products for use as special additives in gasoline and other speciality chemicals.

The funding support forms part of the Hub-and-Spoke initiative at Sasol under which certain universities and specifically the UFS Department of Chemistry have been identified for strategic support for research and development. The department and the UFS gratefully acknowledge this continued and generous support from all parties concerned.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept