Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 June 2025 | Story University of the Free State | Photo Supplied
Ecological Engineering
Dr Jacques Maritz, Albert van Eck, and Dr Nola Redelinghuys are among the University of the Free State researchers driving an interdisciplinary project that combines social insight, high-performance computing, and ecological engineering to support South Africa’s just energy transition.

The University of the Free State (UFS) is taking bold steps to address the complexities of South Africa’s energy transition by combining expertise across disciplines, innovative technologies such as high-performance computing (HPC), and active student involvement. This forward-thinking approach is positioning the UFS at the forefront of solving real-world challenges linked to renewable energy adoption and social dynamics, while equipping students with future-ready skills.

 

Interdisciplinary solutions for a just energy transition

“Current grand challenges – the pressing societal and scientific problems shaping research at the UFS and globally – require students and researchers to include computational approaches such as modelling, simulations, and large-scale data analysis,” says Dr Jacques Maritz, Head of the Unit for Engineering Sciences at the UFS.

“One such example is in merging social dynamics with energy paradigms – two seemingly different worlds, yet connected via scientific elegance,” says Dr Maritz. Energy decisions, such as shifting to renewables, are shaped by the behaviour of communities, governments, and industries. As a recent response to these challenges, ecological and nature-based engineering sciences at the UFS aim to integrate human activity into nature, while benefiting both via the merging of computation, ecological engineering sciences, nature-based solutions, and data-driven complexity science. 

The UFS’ pioneering project models these complex social-energy relationships to better understand how South Africa can sustainably and justly transition from fossil fuels to renewable energy. This interdisciplinary effort involves researchers and students from physics, sociology, engineering, data science, and mathematical modelling working together to map these interdependencies shaped by economic, political, cultural, and community forces.

For students such as Lurgasho Minnie, a final-year MSc Astrophysics student, this interdisciplinary exposure is transformative. “It has given me a new lens or perspective on approaching and solving problems in my field of research. By approaching challenges from an interdisciplinary point of view, new methods and techniques can be applied to solve challenging problems,” he says.

A crucial part of this research involves modelling dynamic social-energy networks using systems thinking, network analysis, and scenario planning. These tools help simulate interactions between government policies, community behaviour, environmental impacts, and technological innovations, allowing researchers to predict and plan for different future scenarios.

Students are actively shaping this work. The first set of social data was collected by UFS students on the Qwaqwa Campus, with training and support from the Centre for Global Change and Student Affairs. These data-gathering efforts are not only enriching the research but also building students' skills in real-world data collection and analysis.

“One of the study objectives is to inform the development of an awareness campaign about the complexities inherent in transitioning from a predominantly non-renewable to a renewable energy system, firstly aimed at UFS students but ultimately at the broader community,” explains Dr Nola Redelinghuys, Senior Lecturer in Sociology at the UFS.

The research team also hopes to help shape sustainable energy solutions for the university itself, with plans to create a renewable energy supply network that balances energy demand and renewable supply across the UFS campuses.

 

High-performance computing powering new insights 

At the heart of this initiative is the UFS High-Performance Computing (HPC) Unit, which enables researchers to run complex simulations and process vast data sets. The HPC is essential for solving problems that require immense computing power and data storage, and the UFS is making these resources accessible to a growing number of students – even those from non-computational disciplines.

“The eResearch and HPC team promotes the development of new skills and knowledge to harness the power of HPC and expand one’s technological abilities to solve problems. The HPC staff must first train a student or researcher to use the system effectively before using their toolsets. Thereafter, students can streamline or even automate specific processes by using a collection of more generic toolsets. Even if not using an HPC daily (or after entering the workforce), the HPC methodologies and toolsets they are exposed to often change how a person approaches future problem sets. Students using the HPC are more likely to share their experiences and are encouraged to assist other students in their department to lessen the burden of entry for newcomers. This broadens the collective knowledge within a department on their toolsets and how to use them effectively,” says Albert van Eck, Director of the UFS HPC.

Students can also learn how to build and configure basic HPC clusters through freely available training materials, opening doors to careers in private cloud hosting, data science, genomics, and other tech industries. By focusing on open-source tools, the UFS ensures that students acquire industry-relevant skills without being locked into specific software vendors.

The project is also laying the groundwork for partnerships with renewable energy companies, technology firms, NGOs, and development agencies. These collaborations will strengthen the UFS’ industry ties and create more work-integrated learning (WIL) opportunities for students.

As part of UFS Vision 130, this project advances academic excellence, societal impact, and inclusivity. By involving diverse staff and students from both the Bloemfontein and Qwaqwa Campuses, it demonstrates the university’s commitment to building a future-ready, skilled, and socially conscious graduate community prepared to tackle South Africa’s energy challenges.

In a country grappling with energy security and the need for a just transition, the UFS’ approach – blending social insight, cutting-edge technology, and student empowerment – offers a valuable model for addressing one of the nation’s most pressing development priorities.

News Archive

UFS to investigate implementation of quality-monitoring system for SA food industry
2006-02-07

Some of the guests who attended the workshop were from the left Prof James du Preez (Chairperson: Department of Biotechnology at the UFS); Prof Lodewyk Kock (Head: South African Fryer Oil Initiative (SAFOI) at the UFS)); Mrs Ina Wilken (Chairperson: South African National Consumer Union (SANCU)); Prof Herman van Schalkwyk (Dean: Faculty of Natural and Agricultural Sciences at the UFS) and Mr Joe Hanekom (Managing Director of Agri Inspec).
Photo: Stephen Collet
 

UFS to investigate implementation of quality-monitoring system for SA food industry

The University of the Free State (UFS) will be investigating the implementation of a quality-monitoring service for the South African food industry. 

This was decided during a workshop to discuss the external quality monitoring in the edible oil industry of South Africa, which was recently held at the UFS.

Major role players in the fast-food sector like Nando's, Spur, Captain
Dorego's, King Pie Holdings, Black Steer Holdings, etc and various oil
distributors like Felda Bridge Africa, Refill Oils, PSS Oils and Ilanga Oils attended
the workshop. Also present was Mrs Ina Wilken, Chairperson of the South African National Consumer Union (SANCU) and key-note speaker of this workshop. She represented the consumer.  

These role players all pledged their support to the implementation of this quality- monitoring system for the whole food industry. 

The decision to implement this system follows the various malpractices reported in the press and on TV concerning food adulteration (eg the recent Sudan Red Scare), misrepresentation (eg olive oil scandal exposed in 2001) and the misuse of edible frying oils by the fast-food sector. 

“One of the basic rights of consumers is the right to safe food. Consumers must be protected against foods and food production processes which are hazardous to their health. Sufficient guarantee of the safety of all food products and food production processes should be implemented. It does not help to have adequate food standards and legislation and there is no manpower to do the necessary investigation or monitoring,” said Mrs Wilken.

The South African Fryer Oil Initiative (SAFOI), under the auspices of the UFS Department of Microbial, Biochemical and Food Biotechnology, currently monitors edible oils in the food industry and makes a seal of quality available to food distributors.

“Last week’s decision to implement the quality-monitoring system implies that we will now be involving also other departments in the UFS Faculty of Natural and Agricultural Sciences who are involved in various aspects of the food chain in an endeavor to implement this quality monitoring system,” said Prof Herman van Schalkwyk, Dean:  Faculty of Natural and Agricultural Sciences at the UFS and one of the main speakers at the workshop.

Prof van Schalkwyk said that the main aim of such a system will be to improve the competitiveness of the South African food industry.  “It is clear that the role players attending the workshop are serious about consumer service and that they agree that fraudulent practice should be monitored and corrected as far as possible.  Although some of the food outlets have the capacity to monitor the quality of their food, it may not seem to the consumer that this is an objective process.  The proposed external monitoring system would counteract this perception amongst consumers,” said Prof van Schalkwyk.

The workshop was also attended by representatives from SAFOI and Agri Inspec, a forensic investigation company collaborating with inter-state and government structures to combat fraud and international trade irregularities.

Agri Inspec has been working closely with SAFOI for a number of years to test the content of edible oils and fats.  “Extensive monitoring and control actions have been executed in the edible oil industry during the past four years to ensure that the content and labeling of oil products are correct.  Four years ago almost 90% of the samples taken indicated that the content differed from what is indicated on the label.  This has changed and the test results currently show that 90% of the products tested are in order. However, to maintain this quality standard, it is necessary that quality monitoring and educational campaigns are continuously performed,” said Mr Joe Hanekom, Managing Director of Agri Inspec. 

“The seal of quality presented by SAFOI should also be extended to include all the smaller oil containers used by households,” Mrs Wilken said.

The SAFOI seal of quality is currently displayed mainly on some oil brands packed in bigger 20 liter containers, which include sunflower oil, cottonseed oil, palm oil etc which are used by restaurants and fast food outlets.  “Any oil type is eligible to display the seal when meeting certain standards of authenticity.  In order to display the seal, the distributor must send a sample of each oil batch they receive from the manufacturer to SAFOI for testing for authenticity, ie that the container’s content matches the oil type described on the label. This is again double checked by Agri Inspec, which also draws samples countrywide from these certified brands from the end-user (restaurant or fast food outlets). If in breach, the seal must be removed from the faulty containers,” said Prof Lodewyk Kock, Head of SAFOI.

“It should however be taken into account that oils without a seal of quality from the UFS can still be of high quality and authentic. Other external laboratories equipped to perform effective authenticity tests may also be used in this respect,” said Prof Kock.

“It is also important to realise that any oil type of quality such as sunflower oil, cottonseed oil, palm oil etc can be used with great success in well controlled frying processes,” he said.

Further discussions will also be held with the Department of Health, the SA National Consumer Union and Agri Inspec to determine priority areas and to develop the most effective low-cost monitoring system.

More information on the UFS oil seal of quality and oil use can be obtained at www.uovs.ac.za/myoilguide

Media release
Issued by: Lacea Loader
Media Representative
Tel:   (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
6 February 2006

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept