Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 June 2025 | Story University of the Free State | Photo Supplied
Ecological Engineering
Dr Jacques Maritz, Albert van Eck, and Dr Nola Redelinghuys are among the University of the Free State researchers driving an interdisciplinary project that combines social insight, high-performance computing, and ecological engineering to support South Africa’s just energy transition.

The University of the Free State (UFS) is taking bold steps to address the complexities of South Africa’s energy transition by combining expertise across disciplines, innovative technologies such as high-performance computing (HPC), and active student involvement. This forward-thinking approach is positioning the UFS at the forefront of solving real-world challenges linked to renewable energy adoption and social dynamics, while equipping students with future-ready skills.

 

Interdisciplinary solutions for a just energy transition

“Current grand challenges – the pressing societal and scientific problems shaping research at the UFS and globally – require students and researchers to include computational approaches such as modelling, simulations, and large-scale data analysis,” says Dr Jacques Maritz, Head of the Unit for Engineering Sciences at the UFS.

“One such example is in merging social dynamics with energy paradigms – two seemingly different worlds, yet connected via scientific elegance,” says Dr Maritz. Energy decisions, such as shifting to renewables, are shaped by the behaviour of communities, governments, and industries. As a recent response to these challenges, ecological and nature-based engineering sciences at the UFS aim to integrate human activity into nature, while benefiting both via the merging of computation, ecological engineering sciences, nature-based solutions, and data-driven complexity science. 

The UFS’ pioneering project models these complex social-energy relationships to better understand how South Africa can sustainably and justly transition from fossil fuels to renewable energy. This interdisciplinary effort involves researchers and students from physics, sociology, engineering, data science, and mathematical modelling working together to map these interdependencies shaped by economic, political, cultural, and community forces.

For students such as Lurgasho Minnie, a final-year MSc Astrophysics student, this interdisciplinary exposure is transformative. “It has given me a new lens or perspective on approaching and solving problems in my field of research. By approaching challenges from an interdisciplinary point of view, new methods and techniques can be applied to solve challenging problems,” he says.

A crucial part of this research involves modelling dynamic social-energy networks using systems thinking, network analysis, and scenario planning. These tools help simulate interactions between government policies, community behaviour, environmental impacts, and technological innovations, allowing researchers to predict and plan for different future scenarios.

Students are actively shaping this work. The first set of social data was collected by UFS students on the Qwaqwa Campus, with training and support from the Centre for Global Change and Student Affairs. These data-gathering efforts are not only enriching the research but also building students' skills in real-world data collection and analysis.

“One of the study objectives is to inform the development of an awareness campaign about the complexities inherent in transitioning from a predominantly non-renewable to a renewable energy system, firstly aimed at UFS students but ultimately at the broader community,” explains Dr Nola Redelinghuys, Senior Lecturer in Sociology at the UFS.

The research team also hopes to help shape sustainable energy solutions for the university itself, with plans to create a renewable energy supply network that balances energy demand and renewable supply across the UFS campuses.

 

High-performance computing powering new insights 

At the heart of this initiative is the UFS High-Performance Computing (HPC) Unit, which enables researchers to run complex simulations and process vast data sets. The HPC is essential for solving problems that require immense computing power and data storage, and the UFS is making these resources accessible to a growing number of students – even those from non-computational disciplines.

“The eResearch and HPC team promotes the development of new skills and knowledge to harness the power of HPC and expand one’s technological abilities to solve problems. The HPC staff must first train a student or researcher to use the system effectively before using their toolsets. Thereafter, students can streamline or even automate specific processes by using a collection of more generic toolsets. Even if not using an HPC daily (or after entering the workforce), the HPC methodologies and toolsets they are exposed to often change how a person approaches future problem sets. Students using the HPC are more likely to share their experiences and are encouraged to assist other students in their department to lessen the burden of entry for newcomers. This broadens the collective knowledge within a department on their toolsets and how to use them effectively,” says Albert van Eck, Director of the UFS HPC.

Students can also learn how to build and configure basic HPC clusters through freely available training materials, opening doors to careers in private cloud hosting, data science, genomics, and other tech industries. By focusing on open-source tools, the UFS ensures that students acquire industry-relevant skills without being locked into specific software vendors.

The project is also laying the groundwork for partnerships with renewable energy companies, technology firms, NGOs, and development agencies. These collaborations will strengthen the UFS’ industry ties and create more work-integrated learning (WIL) opportunities for students.

As part of UFS Vision 130, this project advances academic excellence, societal impact, and inclusivity. By involving diverse staff and students from both the Bloemfontein and Qwaqwa Campuses, it demonstrates the university’s commitment to building a future-ready, skilled, and socially conscious graduate community prepared to tackle South Africa’s energy challenges.

In a country grappling with energy security and the need for a just transition, the UFS’ approach – blending social insight, cutting-edge technology, and student empowerment – offers a valuable model for addressing one of the nation’s most pressing development priorities.

News Archive

Space-based information plays vital role in disaster-risk reduction
2017-02-28

Africa is one of the continents most affected by disasters triggered by natural hazards. The result of climate change is a reality that affects every human being, whether it is extreme heat waves, cyclones, or the devastation of drought and floods. Climate change can provoke injuries or fatalities and affects the livelihoods of people in both rural communities and urban areas. It triggers damage and losses in various sectors of development, such as housing, road infrastructure, agriculture, health, education, telecommunications, energy, and affects routine economic processes leading to economic losses.

According to Dr Dumitru Dorin Prunariu, President of the Association of Space Explorers Europe, space programmes have become an important force defining challenges of the 21st century. “Space observation is essential for climate-change monitoring,” he said.

Dr Prunariu was the keynote speaker at a two-day symposium on climate resilience and water that was hosted by the Disaster Management Training and Education Centre for Africa (DiMTEC), at the University of the Free State (UFS). He participated in the Soviet Union’s Intercosmos programme and completed an eight day-mission on board Soyuz 40 and the Salyut 6 space laboratory, where he and fellow cosmonaut Leonid Popov completed scientific experiments in the fields of astrophysics, space radiation, space technology, space medicine, and biology. He is the 103rd human being to have travelled to outer space.

The focus of Dr Prunariu’s lecture was: Space activities in support of climate change mitigation and climate resilience.

Description: Dr Dumitriu Dorin Prunariu Tags: Dr Dumitriu Dorin Prunariu

Dr Dumitru Dorin Prunariu, the 103rd human
being in outer space and President of
the Association of Space Explorers Europe.
Photo: Charl Devenish

Space-based information, an extra eye that can detect a way out during disasters
“For governments to support communities affected by any disaster, precise and up-to-date information on its impacts is essential as a way to respond in a timely and effective way,” said Dr Prunariu.

Space-based information (derived using Earth observation, global navigation satellite systems, and satellite communications) can play a vital role in supporting disaster-risk reduction, response, and recovery efforts, by providing accurate and timely information to decision-makers.

“With space-based information, disaster management teams will be able to take note of recently established roads that may not appear in typical maps produced by National Geographic Institutes, but which could be used as emergency evacuation routes or as roads to deliver humanitarian assistance to those who require it in remote areas."

Space-based tools help decision-makers to improve planning
“Space-based tools and spatial data infrastructure is also crucial for policy planners and decision-makers in increasing the resilience of human settlements. Using geographic data and information collected before the occurrence of major disasters in combination with post-disaster data could yield important ideas for improved urban planning, especially in disaster-prone areas and highly-populated regions.

“In the recovery process, information on impact is used by governments to provide assistance to those affected, to plan the reconstruction process, and to restore the livelihoods of those affected,” said Dr Prunariu.

“Space observation is
essential for climate-
change monitoring.”

The symposium was attended by representatives from Liberia, Nigeria, Kenya, Ghana, Namibia, and Zimbabwe, with various international scientists from Europe imparting their expert knowledge on water and global resilience. The presence of these international experts strengthened global networks.

It isn't important in which sea or lake you observe a slick of pollution, or in the forests of which country a fire breaks out, or on which continent a hurricane arises, you are standing guard over the whole of our Earth. - Yuri Artyukhin: Soviet Russian cosmonaut and engineer who made a single flight into space.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept