Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 June 2025 | Story University of the Free State | Photo Supplied
Ecological Engineering
Dr Jacques Maritz, Albert van Eck, and Dr Nola Redelinghuys are among the University of the Free State researchers driving an interdisciplinary project that combines social insight, high-performance computing, and ecological engineering to support South Africa’s just energy transition.

The University of the Free State (UFS) is taking bold steps to address the complexities of South Africa’s energy transition by combining expertise across disciplines, innovative technologies such as high-performance computing (HPC), and active student involvement. This forward-thinking approach is positioning the UFS at the forefront of solving real-world challenges linked to renewable energy adoption and social dynamics, while equipping students with future-ready skills.

 

Interdisciplinary solutions for a just energy transition

“Current grand challenges – the pressing societal and scientific problems shaping research at the UFS and globally – require students and researchers to include computational approaches such as modelling, simulations, and large-scale data analysis,” says Dr Jacques Maritz, Head of the Unit for Engineering Sciences at the UFS.

“One such example is in merging social dynamics with energy paradigms – two seemingly different worlds, yet connected via scientific elegance,” says Dr Maritz. Energy decisions, such as shifting to renewables, are shaped by the behaviour of communities, governments, and industries. As a recent response to these challenges, ecological and nature-based engineering sciences at the UFS aim to integrate human activity into nature, while benefiting both via the merging of computation, ecological engineering sciences, nature-based solutions, and data-driven complexity science. 

The UFS’ pioneering project models these complex social-energy relationships to better understand how South Africa can sustainably and justly transition from fossil fuels to renewable energy. This interdisciplinary effort involves researchers and students from physics, sociology, engineering, data science, and mathematical modelling working together to map these interdependencies shaped by economic, political, cultural, and community forces.

For students such as Lurgasho Minnie, a final-year MSc Astrophysics student, this interdisciplinary exposure is transformative. “It has given me a new lens or perspective on approaching and solving problems in my field of research. By approaching challenges from an interdisciplinary point of view, new methods and techniques can be applied to solve challenging problems,” he says.

A crucial part of this research involves modelling dynamic social-energy networks using systems thinking, network analysis, and scenario planning. These tools help simulate interactions between government policies, community behaviour, environmental impacts, and technological innovations, allowing researchers to predict and plan for different future scenarios.

Students are actively shaping this work. The first set of social data was collected by UFS students on the Qwaqwa Campus, with training and support from the Centre for Global Change and Student Affairs. These data-gathering efforts are not only enriching the research but also building students' skills in real-world data collection and analysis.

“One of the study objectives is to inform the development of an awareness campaign about the complexities inherent in transitioning from a predominantly non-renewable to a renewable energy system, firstly aimed at UFS students but ultimately at the broader community,” explains Dr Nola Redelinghuys, Senior Lecturer in Sociology at the UFS.

The research team also hopes to help shape sustainable energy solutions for the university itself, with plans to create a renewable energy supply network that balances energy demand and renewable supply across the UFS campuses.

 

High-performance computing powering new insights 

At the heart of this initiative is the UFS High-Performance Computing (HPC) Unit, which enables researchers to run complex simulations and process vast data sets. The HPC is essential for solving problems that require immense computing power and data storage, and the UFS is making these resources accessible to a growing number of students – even those from non-computational disciplines.

“The eResearch and HPC team promotes the development of new skills and knowledge to harness the power of HPC and expand one’s technological abilities to solve problems. The HPC staff must first train a student or researcher to use the system effectively before using their toolsets. Thereafter, students can streamline or even automate specific processes by using a collection of more generic toolsets. Even if not using an HPC daily (or after entering the workforce), the HPC methodologies and toolsets they are exposed to often change how a person approaches future problem sets. Students using the HPC are more likely to share their experiences and are encouraged to assist other students in their department to lessen the burden of entry for newcomers. This broadens the collective knowledge within a department on their toolsets and how to use them effectively,” says Albert van Eck, Director of the UFS HPC.

Students can also learn how to build and configure basic HPC clusters through freely available training materials, opening doors to careers in private cloud hosting, data science, genomics, and other tech industries. By focusing on open-source tools, the UFS ensures that students acquire industry-relevant skills without being locked into specific software vendors.

The project is also laying the groundwork for partnerships with renewable energy companies, technology firms, NGOs, and development agencies. These collaborations will strengthen the UFS’ industry ties and create more work-integrated learning (WIL) opportunities for students.

As part of UFS Vision 130, this project advances academic excellence, societal impact, and inclusivity. By involving diverse staff and students from both the Bloemfontein and Qwaqwa Campuses, it demonstrates the university’s commitment to building a future-ready, skilled, and socially conscious graduate community prepared to tackle South Africa’s energy challenges.

In a country grappling with energy security and the need for a just transition, the UFS’ approach – blending social insight, cutting-edge technology, and student empowerment – offers a valuable model for addressing one of the nation’s most pressing development priorities.

News Archive

Inaugural lecture: Prof. Phillipe Burger
2007-11-26

 

Attending the lecture were, from the left: Prof. Tienie Crous (Dean of the Faculty of Economic and Management Sciences at the UFS), Prof. Phillipe Burger (Departmental Chairperson of the Department of Economics at the UFS), and Prof. Frederick Fourie (Rector and Vice-Chancellor of the UFS).
Photo: Stephen Collet

 
A summary of an inaugural lecture presented by Prof. Phillipe Burger on the topic: “The ups and downs of the South African Economy: Rough seas or smooth sailing?”

South African business cycle shows reduction in volatility

Better monetary policy and improvements in the financial sector that place less liquidity constraints on individuals is one of the main reasons for the reduction in the volatility of the South African economy. The improvement in access to the financial sector also enables individuals to manage their debt better.

These are some of the findings in an analysis on the volatility of the South African business cycle done by Prof. Philippe Burger, Departmental Chairperson of the University of the Free State’s (UFS) Department of Economics.

Prof. Burger delivered his inaugural lecture last night (22 November 2007) on the Main Campus in Bloemfontein on the topic “The ups and downs of the South African Economy: Rough seas or smooth sailing?”

In his lecture, Prof. Burger emphasised a few key aspects of the South African business cycle and indicated how it changed during the periods 1960-1976, 1976-1994 en 1994-2006.

With the Gross Domestic Product (GDP) as an indicator of the business cycle, the analysis identified the variables that showed the highest correlation with the GDP. During the periods 1976-1994 and 1994-2006, these included durable consumption, manufacturing investment, private sector investment, as well as investment in machinery and non-residential buildings. Other variables that also show a high correlation with the GDP are imports, non-durable consumption, investment in the financial services sector, investment by general government, as well as investment in residential buildings.

Prof. Burger’s analysis also shows that changes in durable consumption, investment in the manufacturing sector, investment in the private sector, as well as investment in non-residential buildings preceded changes in the GDP. If changes in a variable such as durable consumption precede changes in the GDP, it is an indication that durable consumption is one of the drivers of the business cycle. The up or down swing of durable consumption may, in other words, just as well contribute to an up or down swing in the business cycle.

A surprising finding of the analysis is the particularly strong role durable consumption has played in the business cycle since 1994. This finding is especially surprising due to the fact that durable consumption only constitutes about 12% of the total household consumption.

A further surprising finding is the particularly small role exports have been playing since 1960 as a driver of the business cycle. In South Africa it is still generally accepted that exports are one of the most important drivers of the business cycle. It is generally accepted that, should the business cycles of South Africa’s most important trade partners show an upward phase; these partners will purchase more from South Africa. This increase in exports will contribute to the South African economy moving upward. Prof. Burger’s analyses shows, however, that exports have generally never fulfil this role.

Over and above the identification of the drivers of the South African business cycle, Prof. Burger’s analysis also investigated the volatility of the business cycle.

When the periods 1976-1994 and 1994-2006 are compared, the analysis shows that the volatility of the business cycle has reduced since 1994 with more than half. The reduction in volatility can be traced to the reduction in the volatility of household consumption (especially durables and services), as well as a reduction in the volatility of investment in machinery, non-residential buildings and transport equipment. The last three coincide with the general reduction in the volatility of investment in the manufacturing sector. Investment in sectors such as electricity and transport (not to be confused with investment in transport equipment by various sectors) which are strongly dominated by the government, did not contribute to the decrease in volatility.

In his analysis, Prof. Burger supplies reasons for the reduction in volatility. One of the explanations is the reduction in the shocks affecting the economy – especially in the South African context. Another explanation is the application of an improved monetary policy by the South African Reserve Bank since the mid 1990’s. A third explanation is the better access to liquidity and credit since the mid 1990’s, which enables the better management of household finance and the absorption of financial shocks.

A further reason which contributed to the reduction in volatility in countries such as the United States of America’s business cycle is better inventory management. While the volatility of inventory in South Africa has also reduced there is, according to Prof. Burger, little proof that better inventory management contributed to the reduction in volatility of the GDP.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept