Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 June 2025 | Story University of the Free State | Photo Supplied
Ecological Engineering
Dr Jacques Maritz, Albert van Eck, and Dr Nola Redelinghuys are among the University of the Free State researchers driving an interdisciplinary project that combines social insight, high-performance computing, and ecological engineering to support South Africa’s just energy transition.

The University of the Free State (UFS) is taking bold steps to address the complexities of South Africa’s energy transition by combining expertise across disciplines, innovative technologies such as high-performance computing (HPC), and active student involvement. This forward-thinking approach is positioning the UFS at the forefront of solving real-world challenges linked to renewable energy adoption and social dynamics, while equipping students with future-ready skills.

 

Interdisciplinary solutions for a just energy transition

“Current grand challenges – the pressing societal and scientific problems shaping research at the UFS and globally – require students and researchers to include computational approaches such as modelling, simulations, and large-scale data analysis,” says Dr Jacques Maritz, Head of the Unit for Engineering Sciences at the UFS.

“One such example is in merging social dynamics with energy paradigms – two seemingly different worlds, yet connected via scientific elegance,” says Dr Maritz. Energy decisions, such as shifting to renewables, are shaped by the behaviour of communities, governments, and industries. As a recent response to these challenges, ecological and nature-based engineering sciences at the UFS aim to integrate human activity into nature, while benefiting both via the merging of computation, ecological engineering sciences, nature-based solutions, and data-driven complexity science. 

The UFS’ pioneering project models these complex social-energy relationships to better understand how South Africa can sustainably and justly transition from fossil fuels to renewable energy. This interdisciplinary effort involves researchers and students from physics, sociology, engineering, data science, and mathematical modelling working together to map these interdependencies shaped by economic, political, cultural, and community forces.

For students such as Lurgasho Minnie, a final-year MSc Astrophysics student, this interdisciplinary exposure is transformative. “It has given me a new lens or perspective on approaching and solving problems in my field of research. By approaching challenges from an interdisciplinary point of view, new methods and techniques can be applied to solve challenging problems,” he says.

A crucial part of this research involves modelling dynamic social-energy networks using systems thinking, network analysis, and scenario planning. These tools help simulate interactions between government policies, community behaviour, environmental impacts, and technological innovations, allowing researchers to predict and plan for different future scenarios.

Students are actively shaping this work. The first set of social data was collected by UFS students on the Qwaqwa Campus, with training and support from the Centre for Global Change and Student Affairs. These data-gathering efforts are not only enriching the research but also building students' skills in real-world data collection and analysis.

“One of the study objectives is to inform the development of an awareness campaign about the complexities inherent in transitioning from a predominantly non-renewable to a renewable energy system, firstly aimed at UFS students but ultimately at the broader community,” explains Dr Nola Redelinghuys, Senior Lecturer in Sociology at the UFS.

The research team also hopes to help shape sustainable energy solutions for the university itself, with plans to create a renewable energy supply network that balances energy demand and renewable supply across the UFS campuses.

 

High-performance computing powering new insights 

At the heart of this initiative is the UFS High-Performance Computing (HPC) Unit, which enables researchers to run complex simulations and process vast data sets. The HPC is essential for solving problems that require immense computing power and data storage, and the UFS is making these resources accessible to a growing number of students – even those from non-computational disciplines.

“The eResearch and HPC team promotes the development of new skills and knowledge to harness the power of HPC and expand one’s technological abilities to solve problems. The HPC staff must first train a student or researcher to use the system effectively before using their toolsets. Thereafter, students can streamline or even automate specific processes by using a collection of more generic toolsets. Even if not using an HPC daily (or after entering the workforce), the HPC methodologies and toolsets they are exposed to often change how a person approaches future problem sets. Students using the HPC are more likely to share their experiences and are encouraged to assist other students in their department to lessen the burden of entry for newcomers. This broadens the collective knowledge within a department on their toolsets and how to use them effectively,” says Albert van Eck, Director of the UFS HPC.

Students can also learn how to build and configure basic HPC clusters through freely available training materials, opening doors to careers in private cloud hosting, data science, genomics, and other tech industries. By focusing on open-source tools, the UFS ensures that students acquire industry-relevant skills without being locked into specific software vendors.

The project is also laying the groundwork for partnerships with renewable energy companies, technology firms, NGOs, and development agencies. These collaborations will strengthen the UFS’ industry ties and create more work-integrated learning (WIL) opportunities for students.

As part of UFS Vision 130, this project advances academic excellence, societal impact, and inclusivity. By involving diverse staff and students from both the Bloemfontein and Qwaqwa Campuses, it demonstrates the university’s commitment to building a future-ready, skilled, and socially conscious graduate community prepared to tackle South Africa’s energy challenges.

In a country grappling with energy security and the need for a just transition, the UFS’ approach – blending social insight, cutting-edge technology, and student empowerment – offers a valuable model for addressing one of the nation’s most pressing development priorities.

News Archive

Power interruptions: Information for internal communication
2008-01-31

As part of the UFS’s commitment to address load shedding, the management would like to communicate the following:

The UFS mainly deals with the power interruptions by way of (a) the possible installation of equipment (e.g. generators) and (b) operational arrangements to ensure the functioning of the UFS in spite of power interruptions.

During the past week progress was made on both fronts. The information that follows resulted from a meeting of a task team of Physical Resources led by Mr Nico Janse van Rensburg, which took place on Monday 28 January (this task team naturally focuses on physical solutions) and a discussion by Exco on Wednesday 30 January 2008. Exco discussed the recommendations of the mentioned task team in respect of physical aspects, as well as the operational arrangements proposed by faculties.

Physical solutions

A Main Campus

1. New emergency power installations already approved:

Last week Exco gave its approval for the design and installation of emergency power equipment in all the large lecture-hall complexes to proceed immediately.

In all these cases

  • load surveys have been completed and a start has been made with the ordering of equipment and the process of appointing contractors. (Exco approved the adjustment of normal tender procedures in an attempt to expedite completion.)
  • generators with 20-30% more capacity than required for the current load are being ordered.
  • provision is being made for the connection of lights and at least one wall plug to the emergency power.
  • the expected construction time is 16 weeks (except in the case of the Flippie Groenewoud Building where it is 6 weeks).

The above-mentioned concerns lecture halls/ venues in the following buildings: Examination Centre, Flippie Groenewoud Building, Stabilis, Genmin and the Agriculture Building.

As far as the Agriculture Building is concerned, a larger generator (larger than required for lecture venues only) is being ordered in view of simultaneously providing essential research equipment (refrigerators, ovens, glasshouses) with emergency power within 16 weeks.

2. Investigation into the optimal utilisation of present emergency power installations

All the emergency power systems are being investigated on the basis of a list compiled in 2006 to determine whether excess capacity is available and whether it is possible to connect additional essential equipment or lights to it.

The electrical engineer warns as follows:
“Staff members must under no circumstances overload present emergency power points.

A typical example of this is a laboratory with 10 power points of which 2 points are emergency power outlets. Normally a fridge and freezer would, for example, be plugged into the two emergency power points, but now, with long load-shedding interruptions, a considerably larger number of appliances are being plugged into the power point by means of multi-sockets and extension cords. In the end the effect of such connections will accumulate at the emergency generator, which will then create a greater danger of it being overloaded and tripping, in other words, no emergency power will then be available.”

3. Requests and needs addressed directly to Physical Resources or reported to Exco via the line managers.

All the physical needs and requests addressed directly to Physical Resources or submitted to Exco via the line managers are being listed, classified and considered technically in view of their being discussed by the task team on Monday 11 February.
The information will (a) lead to recommendations to Exco regarding possible additional urgent emergency power installations, and (b) be used in the comprehensive investigation into the UFS’s preparedness for and management of long power interruptions.

Requests that can easily be complied with immediately and that fit into the general strategy will indeed be dealt with as soon as possible.

4. Purchase of loose-standing equipment: light, small, loose-standing generators, UPSs as solutions to/ aids during power interruptions

Exco approved that

a) faculties and support services accept responsibility themselves for the funding and purchase of loose equipment such as, for example battery lights, should they regard these as essential.
b) UPSs (uninterruptible power supplies) that faculties and support services wish to purchase to combat the detrimental effect of unexpected power interruptions on computer equipment) can (as at present) be purchased from own funds via Computer Services.
c) UPSs (uninterruptible power supplies) that faculties and support services wish to purchase to combat the detrimental effect of unexpected power interruptions on other types of equipment can normally be purchased from own funds with the consent of the line manager concerned.
Note: Please just make sure of the appropriateness of the equipment for a specific situation: it is not a power supply that can bridge a two-hour power interruption.)
d) small, loose-standing generators can be purchased from own funds via Physical Resources and installed under their supervision.
e) laptop computers can , where necessary, be purchased from own budgets. The availability of second-hand laptop computers must be taken into account.

B Vista

No major problems have been reported to date. The situation is being monitored and will be managed according to need. The same guidelines that apply to the Main Campus will naturally also apply to the Vista Campus.

C Qwaqwa

The situation is receiving attentions and solutions have already been found for most problems.

D General

1. All-inclusive project
A comprehensive investigation into the UFS’s preparedness for and management of long power interruptions will be launched as soon as possible. Available capacity will be utilised first to alleviate the immediate need. The needs assessment to which all faculties and support services have already contributed is already an important building block of the larger project.

2. Building and construction projects currently in the planning and implementation phase
The need for emergency power for projects such as the new Computer Laboratory is being investigated proactively and will be addressed in a suitable manner.

3. Liaison with Centlec
Attempts at direct and continuous liaison are continuing in an attempt to accommodate the unique needs of the UFS.

4. HESA meeting and liaison with other universities
A representative of the UFS will attend a meeting of all higher education institutions on 11 February. The meeting is being arranged by HESA (Higher Education South Africa) to discuss the implications for the sector, the management of risks and the sector’s response to government.

5. Internal communication
It is the intention to communicate internally after every meeting of the task team, which will take place on Mondays. Strategic Communication will assist in this regard.


 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept