Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 June 2025 | Story Dr Nitha Ramnath | Photo Lunga Luthuli
Dr Omololu Aluko
Dr Omololu Aluko, Senior Lecturer in the Department of Biostatistics advances health research and collaboration during prestigious fellowship at Ghent University, Belgium.

Dr Omololu Aluko, Senior Lecturer in the Department of Biostatistics in the Faculty of Health Sciences at the University of the Free State (UFS), recently completed a prestigious short research stay at Ghent University in Belgium. The fellowship, hosted in April 2025, was awarded through the highly competitive Africa Platform of Ghent University Association (GAP) funding scheme, with additional support from the UFS International Office. 

A recognised expert in infectious disease modelling, particularly HIV/AIDS research in low-resource settings, Dr Aluko has devoted his academic career to using biostatistics to address pressing health challenges. His selection for this fellowship marks a significant achievement both for his individual research trajectory and for the broader ambitions of the Faculty of Health Sciences and the UFS.

 

Strategic steps towards international collaboration 

The opportunity for the fellowship was first announced in the UFS Digest Newsletter. Motivated by the potential for international collaboration, Dr Aluko began seeking a host at Ghent University whose interests aligned with his own. After several weeks of correspondence with various departments and researchers, a suitable academic collaborator agreed to host him. 

With a host confirmed, Dr Aluko submitted his application, which underwent a rigorous review and selection process. His proposal was shortlisted and ultimately approved. While Ghent University provided partial funding, supplementary financial support was secured through the UFS International Office. Dr Aluko credits the office’s assistance – especially the guidance of Mr Kagiso Ngake, Senior Officer: Partnerships – for helping him successfully secure the necessary resources. 

 

Advancing research in health data science  

During his time at Ghent University, Dr Aluko focused on the application of machine learning algorithms to address public health challenges – an increasingly important field within the Faculty of Health Sciences. His research demonstrated how advanced data analysis techniques can improve health outcomes and optimise treatment strategies, especially in resource-constrained settings. 

Beyond the immediate research achievements, the fellowship laid a foundation for long-term collaboration between the UFS and Ghent University. Key outcomes include: 

  • Opportunities for joint PhD supervision, allowing UFS students to conduct part of their research at Ghent University 
  • Prospects for publishing collaborative research in leading international A1-rated journals 
  • The identification of a promising young research collaborator, paving the way for future academic partnerships 
  • Plans to explore future staff exchange programmes, as new funding calls are announced 

     

A growing partnership in a new academic field 

Dr Annelies Verdoolaege, Coordinator for the Africa Platform at Ghent University, emphasised the broader vision behind the initiative:

“The purpose of these fellowships is to foster structural academic collaboration between Ghent University and partners in Africa. We offer a dedicated amount of seed funding to support short-term mobility, with the aim of building long-term partnerships – through student exchange, joint PhDs, joint funding proposals, and collaborative research publications. 

The UFS is a long-standing partner of Ghent University, especially in Education, Linguistics, and Agriculture. We are delighted that this fellowship has taken place in the field of Data Analysis and Mathematical Modelling - a scientific domain still to be fully developed between our institutions.” 

 

Enhancing UFS’ global research impact 

Dr Aluko’s successful fellowship reflects the high calibre of researchers at the UFS and illustrates the importance of international academic mobility. By securing this competitive opportunity, Dr Aluko not only advanced his own work but also strengthened the UFS’ global research footprint - opening new collaborative avenues and reinforcing the university's growing reputation in health sciences and data-driven research. 

The UFS expresses its sincere gratitude to the Africa Platform of Ghent University and the UFS International Office for their critical support in enabling this milestone. Partnerships such as this are key to fulfilling the UFS’ mission of producing world-class research and fostering meaningful global engagement. 

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept