Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 June 2025 | Story Dr Nitha Ramnath | Photo Lunga Luthuli
Dr Omololu Aluko
Dr Omololu Aluko, Senior Lecturer in the Department of Biostatistics advances health research and collaboration during prestigious fellowship at Ghent University, Belgium.

Dr Omololu Aluko, Senior Lecturer in the Department of Biostatistics in the Faculty of Health Sciences at the University of the Free State (UFS), recently completed a prestigious short research stay at Ghent University in Belgium. The fellowship, hosted in April 2025, was awarded through the highly competitive Africa Platform of Ghent University Association (GAP) funding scheme, with additional support from the UFS International Office. 

A recognised expert in infectious disease modelling, particularly HIV/AIDS research in low-resource settings, Dr Aluko has devoted his academic career to using biostatistics to address pressing health challenges. His selection for this fellowship marks a significant achievement both for his individual research trajectory and for the broader ambitions of the Faculty of Health Sciences and the UFS.

 

Strategic steps towards international collaboration 

The opportunity for the fellowship was first announced in the UFS Digest Newsletter. Motivated by the potential for international collaboration, Dr Aluko began seeking a host at Ghent University whose interests aligned with his own. After several weeks of correspondence with various departments and researchers, a suitable academic collaborator agreed to host him. 

With a host confirmed, Dr Aluko submitted his application, which underwent a rigorous review and selection process. His proposal was shortlisted and ultimately approved. While Ghent University provided partial funding, supplementary financial support was secured through the UFS International Office. Dr Aluko credits the office’s assistance – especially the guidance of Mr Kagiso Ngake, Senior Officer: Partnerships – for helping him successfully secure the necessary resources. 

 

Advancing research in health data science  

During his time at Ghent University, Dr Aluko focused on the application of machine learning algorithms to address public health challenges – an increasingly important field within the Faculty of Health Sciences. His research demonstrated how advanced data analysis techniques can improve health outcomes and optimise treatment strategies, especially in resource-constrained settings. 

Beyond the immediate research achievements, the fellowship laid a foundation for long-term collaboration between the UFS and Ghent University. Key outcomes include: 

  • Opportunities for joint PhD supervision, allowing UFS students to conduct part of their research at Ghent University 
  • Prospects for publishing collaborative research in leading international A1-rated journals 
  • The identification of a promising young research collaborator, paving the way for future academic partnerships 
  • Plans to explore future staff exchange programmes, as new funding calls are announced 

     

A growing partnership in a new academic field 

Dr Annelies Verdoolaege, Coordinator for the Africa Platform at Ghent University, emphasised the broader vision behind the initiative:

“The purpose of these fellowships is to foster structural academic collaboration between Ghent University and partners in Africa. We offer a dedicated amount of seed funding to support short-term mobility, with the aim of building long-term partnerships – through student exchange, joint PhDs, joint funding proposals, and collaborative research publications. 

The UFS is a long-standing partner of Ghent University, especially in Education, Linguistics, and Agriculture. We are delighted that this fellowship has taken place in the field of Data Analysis and Mathematical Modelling - a scientific domain still to be fully developed between our institutions.” 

 

Enhancing UFS’ global research impact 

Dr Aluko’s successful fellowship reflects the high calibre of researchers at the UFS and illustrates the importance of international academic mobility. By securing this competitive opportunity, Dr Aluko not only advanced his own work but also strengthened the UFS’ global research footprint - opening new collaborative avenues and reinforcing the university's growing reputation in health sciences and data-driven research. 

The UFS expresses its sincere gratitude to the Africa Platform of Ghent University and the UFS International Office for their critical support in enabling this milestone. Partnerships such as this are key to fulfilling the UFS’ mission of producing world-class research and fostering meaningful global engagement. 

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept