Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 June 2025 | Story Dr Nitha Ramnath | Photo Lunga Luthuli
Dr Omololu Aluko
Dr Omololu Aluko, Senior Lecturer in the Department of Biostatistics advances health research and collaboration during prestigious fellowship at Ghent University, Belgium.

Dr Omololu Aluko, Senior Lecturer in the Department of Biostatistics in the Faculty of Health Sciences at the University of the Free State (UFS), recently completed a prestigious short research stay at Ghent University in Belgium. The fellowship, hosted in April 2025, was awarded through the highly competitive Africa Platform of Ghent University Association (GAP) funding scheme, with additional support from the UFS International Office. 

A recognised expert in infectious disease modelling, particularly HIV/AIDS research in low-resource settings, Dr Aluko has devoted his academic career to using biostatistics to address pressing health challenges. His selection for this fellowship marks a significant achievement both for his individual research trajectory and for the broader ambitions of the Faculty of Health Sciences and the UFS.

 

Strategic steps towards international collaboration 

The opportunity for the fellowship was first announced in the UFS Digest Newsletter. Motivated by the potential for international collaboration, Dr Aluko began seeking a host at Ghent University whose interests aligned with his own. After several weeks of correspondence with various departments and researchers, a suitable academic collaborator agreed to host him. 

With a host confirmed, Dr Aluko submitted his application, which underwent a rigorous review and selection process. His proposal was shortlisted and ultimately approved. While Ghent University provided partial funding, supplementary financial support was secured through the UFS International Office. Dr Aluko credits the office’s assistance – especially the guidance of Mr Kagiso Ngake, Senior Officer: Partnerships – for helping him successfully secure the necessary resources. 

 

Advancing research in health data science  

During his time at Ghent University, Dr Aluko focused on the application of machine learning algorithms to address public health challenges – an increasingly important field within the Faculty of Health Sciences. His research demonstrated how advanced data analysis techniques can improve health outcomes and optimise treatment strategies, especially in resource-constrained settings. 

Beyond the immediate research achievements, the fellowship laid a foundation for long-term collaboration between the UFS and Ghent University. Key outcomes include: 

  • Opportunities for joint PhD supervision, allowing UFS students to conduct part of their research at Ghent University 
  • Prospects for publishing collaborative research in leading international A1-rated journals 
  • The identification of a promising young research collaborator, paving the way for future academic partnerships 
  • Plans to explore future staff exchange programmes, as new funding calls are announced 

     

A growing partnership in a new academic field 

Dr Annelies Verdoolaege, Coordinator for the Africa Platform at Ghent University, emphasised the broader vision behind the initiative:

“The purpose of these fellowships is to foster structural academic collaboration between Ghent University and partners in Africa. We offer a dedicated amount of seed funding to support short-term mobility, with the aim of building long-term partnerships – through student exchange, joint PhDs, joint funding proposals, and collaborative research publications. 

The UFS is a long-standing partner of Ghent University, especially in Education, Linguistics, and Agriculture. We are delighted that this fellowship has taken place in the field of Data Analysis and Mathematical Modelling - a scientific domain still to be fully developed between our institutions.” 

 

Enhancing UFS’ global research impact 

Dr Aluko’s successful fellowship reflects the high calibre of researchers at the UFS and illustrates the importance of international academic mobility. By securing this competitive opportunity, Dr Aluko not only advanced his own work but also strengthened the UFS’ global research footprint - opening new collaborative avenues and reinforcing the university's growing reputation in health sciences and data-driven research. 

The UFS expresses its sincere gratitude to the Africa Platform of Ghent University and the UFS International Office for their critical support in enabling this milestone. Partnerships such as this are key to fulfilling the UFS’ mission of producing world-class research and fostering meaningful global engagement. 

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept