Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story University of the Free State | Photo Supplied
Dr Hossein Naghizadeh and Refilwe Lediga
Collaborative innovation in action: Researchers from the University of the Free State’s Green Concrete Lab have partnered with the University of Johannesburg to advance 3D printing technologies using sustainable concrete materials. Pictured (from left): Dr Hossein Naghizadeh, Senior Lecturer in Engineering Sciences at UFS, and Refilwe Lediga, Concrete Printing Research Expert in the Department of Civil Engineering Technology at UJ.

In an ambitious and interdisciplinary effort to address today’s Grand Challenges, researchers at the University of the Free State (UFS) are exploring how nature’s oldest life forms – stromatolites – can inspire cutting-edge innovations in industrial ecology and marine conservation.  Drawing from biomimicry, 3D printing, and microbial engineering, their work showcases the convergence of ecological insight with modern technology. 

“One such example is replicating the structures of stromatolites – some of the earliest evidence of life - using green cement and 3D printing, the latest technology in industrial ecology,” explains Dr Jacques Maritz, Head of the Unit of Engineering Sciences at UFS. 

 

Ancient structures, modern science  

Stromatolites are layered microbial formations created by ancient cyanobacteria and date back over 3.5 billion years. These living fossils, found in fossil records and rare modern environments like Shark Bay in Australia, grow through a combination of photosynthesis, sediment trapping, and calcium carbonate precipitation. Not only do they support biodiversity, but they also play a vital role in natural carbon sequestration. 

UFS researchers are harnessing the lessons from these ancient formations to address urgent environmental challenges. In particular, Dr Yolandi Schoeman, Senior Lecturer at the Centre for Biogeochemistry, is leading efforts to cultivate hybrid stromatolites in controlled environments, using microbial consortia grown on 3D-printed scaffolds.  

“At UFS, we are reimagining stromatolite formation through both artificial structural replication and biological cultivation, bridging industrial ecology and microbial engineering to address modern environmental challenges,” says Dr Schoeman. 

 

Ecological engineering for reef restoration 

The rapid decline of marine biodiversity and the degradation of natural reef ecosystems have prompted ecological engineers to develop innovative solutions. At the UFS Green Concrete Lab, researchers are pioneering the design of artificial reefs using 3D-printed, low-carbon geopolymer concrete – a material formulated from industrial by-products such as fly ash and slag. 

Artificial reefs mimic natural reef complexity and serve as critical habitats for marine life, from fish and crustaceans to coral polyps and algae. Algae, in particular, are key to marine ecosystems due to their roles in nutrient cycling, oxygen production, and carbon capture. 

“Green concrete refers to concrete that utilises alternative binders and industrial by-products, significantly reducing the environmental footprint. At UFS, we are focusing on geopolymer concrete, which eliminates the high-energy processes associated with Portland cement, while offering greater chemical resistance - ideal for marine applications,” explains Dr Abdolhossein Naghizadeh from the Unit of Engineering Sciences. 

 

3D printing nature’s complexity 

One of the challenges in artificial reef development is replicating biologically inspired geometries that support diverse marine ecosystems. Traditional construction methods often fail in this regard, but additive manufacturing, or 3D concrete printing, is providing a solution.  

The UFS Green Concrete Lab, in collaboration with the University of Johannesburg, is developing reef modules with intricate geometries and natural surface textures. These features support coral and algae attachment, accelerate ecological colonisation, and enhance habitat functionality. Biochar-based compost filters are also being integrated to aid algae-driven wastewater treatment. 

A particularly novel avenue of research involves using 3D printing to recreate stromatolite structures. These serve as ancient blueprints for modern reef design, merging deep-time ecological understanding with advanced material science. 

 

Biologically engineered hybrid stromatolites  

In parallel to structural efforts, UFS is advancing biological approaches to stromatolite cultivation. From July 2025, researchers in the Unit of Engineering Sciences will initiate a large-scale experiment using microbial consortia in 60-litre tanks, scaling up to 1 m² hypersaline ponds. 3D-printed conical scaffolds, coated with materials such as PP-CaCO₃, hydroxyapatite, and silica gel, will accelerate microbial colonisation and lamination. 

The goal: to achieve stromatolite growth of 14-16 mm in just 28 days - over 150 times faster than in nature. These hybrid systems are expected to produce 7-8 mg/L/day of oxygen, sequester carbon at 3.2 g/m²/day, and remove up to 90% of nitrates and phosphates from water. The potential applications extend from terrestrial ecosystem restoration to extraterrestrial life-support systems. 

 

A multidisciplinary vision for sustainability 

This work exemplifies the strength of interdisciplinary research at UFS, combining civil engineering, mechatronics, marine ecology, chemistry, microbiology, and digital fabrication. The Ecological Engineering Sciences stream fosters a vibrant environment for postgraduate students to develop practical, impactful solutions.  

The Green Concrete Lab is central to these efforts, offering students and researchers access to advanced technologies and collaborative networks. Through their innovative work in 3D-printed green concrete and microbial systems, UFS researchers are addressing biodiversity loss, advancing sustainable construction, and contributing to the global climate agenda. 

“Whether it's rethinking materials, restoring ecosystems, or redefining what concrete can be, our research is laying the foundation for a better, more sustainable world beneath the waves,” concludes Dr Maritz. 

News Archive

Qwaqwa Campus honours academic excellence
2017-05-18

Description: QQ autumn Graduation 2017 Tags: QQ autumn Graduation 2017

Photo: Ian van Straaten

Photo Gallery
Video


Qwaqwa Campus kicked off the 2017 graduations season of the University of the Free State in style when over 550 degrees and certificates were conferred in three sessions on 12 and 13 May 2017. These included five PhDs from the Faculty of Natural and Agricultural Sciences.

In his maiden speech delivered during the two ceremonies on Friday 12 May 2017, the newly-appointed Vice-Chancellor and Rector, Prof Francis Petersen, emphasised the interconnectedness of graduates with other stakeholders in their communities.

“Never forget the role played by other people who sacrificed a lot for you to be here today. Recognise the extra mile that someone was willing to go for you to graduate,” he said to an enthusiastic audience that included Grade 12 learners from neighbouring schools. 

Prof Petersen also reminded the graduates that not everybody had an opportunity to enter, enrol, and eventually graduate at a university. “You are part of the privileged few, and I am confident that the UFS has given you an equal opportunity to reach your full potential. You have had years of exposure to ideas and experiences on diversity. You now have the opportunity to show the world and to use what you have learnt beyond a classroom,” he added.

“Go out there and open doors for others as much as they were opened for you. I implore you to carry over your experiences of diversity and use them to build a better world. Go out there and build a better world, not only for yourself but for everyone in need. Expand your influence, reach out, and be accountable,” he said.

“South Africa needs your skills,
innovation, knowledge, expertise,
and creativity.”

Make your own unique contribution
The session held on Saturday 13 May 2017 saw the Principal of Motheo TVET College and Qwaqwa Campus alumnus, Dipiloane Phutsisi, having a heart to heart with the graduates from the Faculty of Education.

“Our contribution to the world as graduates will not be measured by the wealth we accumulate or the accolades we receive, but rather by the way in which we share our unique gifts with the world. And the only place to find those gifts is to look within yourself. As the class of 2017, make your own unique contribution,” she said.

“Your graduation takes place at a particularly challenging time in the history of our democracy. It happens at a time when our nation is engulfed by racial polarisation, anger, confusion about what democracy and freedom mean to us, and at a time when the pillars of morality are tested.”

“As you graduate, I wish to remind you that our country needs you more than ever before. South Africa needs your skills, innovation, knowledge, expertise, and creativity,” she said.

Three members of the current SRC were also among the graduates. They are the President, Njabulo Mwali (BSc Information Technology), Sports Affairs Officer, Ntokozo Thango (BA Sociology), and Student Development and Environmental Affairs Officer, Ntokozo Masiteng (BA Sociology).

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept