Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story University of the Free State | Photo Supplied
Dr Hossein Naghizadeh and Refilwe Lediga
Collaborative innovation in action: Researchers from the University of the Free State’s Green Concrete Lab have partnered with the University of Johannesburg to advance 3D printing technologies using sustainable concrete materials. Pictured (from left): Dr Hossein Naghizadeh, Senior Lecturer in Engineering Sciences at UFS, and Refilwe Lediga, Concrete Printing Research Expert in the Department of Civil Engineering Technology at UJ.

In an ambitious and interdisciplinary effort to address today’s Grand Challenges, researchers at the University of the Free State (UFS) are exploring how nature’s oldest life forms – stromatolites – can inspire cutting-edge innovations in industrial ecology and marine conservation.  Drawing from biomimicry, 3D printing, and microbial engineering, their work showcases the convergence of ecological insight with modern technology. 

“One such example is replicating the structures of stromatolites – some of the earliest evidence of life - using green cement and 3D printing, the latest technology in industrial ecology,” explains Dr Jacques Maritz, Head of the Unit of Engineering Sciences at UFS. 

 

Ancient structures, modern science  

Stromatolites are layered microbial formations created by ancient cyanobacteria and date back over 3.5 billion years. These living fossils, found in fossil records and rare modern environments like Shark Bay in Australia, grow through a combination of photosynthesis, sediment trapping, and calcium carbonate precipitation. Not only do they support biodiversity, but they also play a vital role in natural carbon sequestration. 

UFS researchers are harnessing the lessons from these ancient formations to address urgent environmental challenges. In particular, Dr Yolandi Schoeman, Senior Lecturer at the Centre for Biogeochemistry, is leading efforts to cultivate hybrid stromatolites in controlled environments, using microbial consortia grown on 3D-printed scaffolds.  

“At UFS, we are reimagining stromatolite formation through both artificial structural replication and biological cultivation, bridging industrial ecology and microbial engineering to address modern environmental challenges,” says Dr Schoeman. 

 

Ecological engineering for reef restoration 

The rapid decline of marine biodiversity and the degradation of natural reef ecosystems have prompted ecological engineers to develop innovative solutions. At the UFS Green Concrete Lab, researchers are pioneering the design of artificial reefs using 3D-printed, low-carbon geopolymer concrete – a material formulated from industrial by-products such as fly ash and slag. 

Artificial reefs mimic natural reef complexity and serve as critical habitats for marine life, from fish and crustaceans to coral polyps and algae. Algae, in particular, are key to marine ecosystems due to their roles in nutrient cycling, oxygen production, and carbon capture. 

“Green concrete refers to concrete that utilises alternative binders and industrial by-products, significantly reducing the environmental footprint. At UFS, we are focusing on geopolymer concrete, which eliminates the high-energy processes associated with Portland cement, while offering greater chemical resistance - ideal for marine applications,” explains Dr Abdolhossein Naghizadeh from the Unit of Engineering Sciences. 

 

3D printing nature’s complexity 

One of the challenges in artificial reef development is replicating biologically inspired geometries that support diverse marine ecosystems. Traditional construction methods often fail in this regard, but additive manufacturing, or 3D concrete printing, is providing a solution.  

The UFS Green Concrete Lab, in collaboration with the University of Johannesburg, is developing reef modules with intricate geometries and natural surface textures. These features support coral and algae attachment, accelerate ecological colonisation, and enhance habitat functionality. Biochar-based compost filters are also being integrated to aid algae-driven wastewater treatment. 

A particularly novel avenue of research involves using 3D printing to recreate stromatolite structures. These serve as ancient blueprints for modern reef design, merging deep-time ecological understanding with advanced material science. 

 

Biologically engineered hybrid stromatolites  

In parallel to structural efforts, UFS is advancing biological approaches to stromatolite cultivation. From July 2025, researchers in the Unit of Engineering Sciences will initiate a large-scale experiment using microbial consortia in 60-litre tanks, scaling up to 1 m² hypersaline ponds. 3D-printed conical scaffolds, coated with materials such as PP-CaCO₃, hydroxyapatite, and silica gel, will accelerate microbial colonisation and lamination. 

The goal: to achieve stromatolite growth of 14-16 mm in just 28 days - over 150 times faster than in nature. These hybrid systems are expected to produce 7-8 mg/L/day of oxygen, sequester carbon at 3.2 g/m²/day, and remove up to 90% of nitrates and phosphates from water. The potential applications extend from terrestrial ecosystem restoration to extraterrestrial life-support systems. 

 

A multidisciplinary vision for sustainability 

This work exemplifies the strength of interdisciplinary research at UFS, combining civil engineering, mechatronics, marine ecology, chemistry, microbiology, and digital fabrication. The Ecological Engineering Sciences stream fosters a vibrant environment for postgraduate students to develop practical, impactful solutions.  

The Green Concrete Lab is central to these efforts, offering students and researchers access to advanced technologies and collaborative networks. Through their innovative work in 3D-printed green concrete and microbial systems, UFS researchers are addressing biodiversity loss, advancing sustainable construction, and contributing to the global climate agenda. 

“Whether it's rethinking materials, restoring ecosystems, or redefining what concrete can be, our research is laying the foundation for a better, more sustainable world beneath the waves,” concludes Dr Maritz. 

News Archive

#Women’sMonth: A career in Sign Language interpreting proves to be full of rewards for Natasha Parkins-Maliko
2017-08-03

 Description: Natasha Parkins-Maliko new Tags: Natasha Parkins-Maliko new 

Natasha Parkins-Maliko. She
was recently awarded the Pansalb
Multilingual Award in the category:
Translation and Interpreting 2016/2017,
as recognition for her achievements
in a sixteen-year career.
Photo: Supplied

Natasha Parkins-Maliko is an alumna of the University of the Free State who graduated with a master’s in Linguistics. She is a well-rounded interpreter with a language combination of South African Sign Language-English-Afrikaans. She continued her studies and achieved an international master’s in Sign Language interpreting at the Humak University of Applied Sciences in Finland.  Natasha was recently presented with the Pansalb Multilingual Award in the category: Translation and Interpreting 2016/2017, as recognition for her achievements in a sixteen-year career.

“Winning the Pansalb Translation and Interpreting Award for 2016/2017, was for me as Kovsie a pat on the back in the true sense of the word.  The university is where I started my journey in South African Sign Language interpreting, and from then on, I never looked back,” she said.

Her interpreting career has provided many challenges, and was accompanied by great achievements along the way.

A career of fulfilment in Sign Language

“The foundation of my success was laid by my lecturers and mentors, such as Dr Philemon Akach and Emily Matabane, where I trained in the Department of South African Sign Language (SASL) at the university.”

“My determination and success is grounded in the motto, ‘Inspiring Excellence, Transforming Lives’ – a continued journey in excellence gives a renewed sense of pride for all language practitioners in South Africa,” she said.

Natasha went on to work in the deaf community for most of her career. She started as a grassroots interpreter, and is now a professional interpreter registered with SATI (South African Translators Institute). She is also a Sign Language television interpreter on SABC for content such as SABC 3 news bulletins, the budget speech, opening of Parliament, Youth Day broadcasts, January 8th statement broadcasts, MPC Reserve Bank speeches, and many more. Natasha is not only concerned with growing her career – despite her mover and shaker persona, she still takes time to volunteer her services for deaf people who do not have the financial ability to pay for interpreting.

“Winning the Pansalb Translation and
Interpreting Award for 2016/2017, was
for me as Kovsie a pat on the back in
the true sense of the word.”

The journey to excellence never stops
Over and above lecturing in Interpreting and Translation at Wits University, Natasha is still in pursuit of excellence. She is a PhD candidate in the SASL Interpreting programme at Wits University, the first of its kind in the country, and is pursuing an AIIC (International Association of Conference Interpreters) accreditation. Her aim is to put South African Sign Language interpretation on the global map.

As a role model and icon in her field, Natasha is the chairperson of the National Association of South African Sign Language Interpreters (NASASLI), the regional coordinator for the African Federation of Sign Language Interpreters (AFSLI), and the Africa regional representative on the board of the World Association of Sign Language Interpreters (WASLI).  The award presented to her is no doubt a fitting accolade and something all UFS alumni takes pride in.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept