Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story University of the Free State | Photo Supplied
Dr Hossein Naghizadeh and Refilwe Lediga
Collaborative innovation in action: Researchers from the University of the Free State’s Green Concrete Lab have partnered with the University of Johannesburg to advance 3D printing technologies using sustainable concrete materials. Pictured (from left): Dr Hossein Naghizadeh, Senior Lecturer in Engineering Sciences at UFS, and Refilwe Lediga, Concrete Printing Research Expert in the Department of Civil Engineering Technology at UJ.

In an ambitious and interdisciplinary effort to address today’s Grand Challenges, researchers at the University of the Free State (UFS) are exploring how nature’s oldest life forms – stromatolites – can inspire cutting-edge innovations in industrial ecology and marine conservation.  Drawing from biomimicry, 3D printing, and microbial engineering, their work showcases the convergence of ecological insight with modern technology. 

“One such example is replicating the structures of stromatolites – some of the earliest evidence of life - using green cement and 3D printing, the latest technology in industrial ecology,” explains Dr Jacques Maritz, Head of the Unit of Engineering Sciences at UFS. 

 

Ancient structures, modern science  

Stromatolites are layered microbial formations created by ancient cyanobacteria and date back over 3.5 billion years. These living fossils, found in fossil records and rare modern environments like Shark Bay in Australia, grow through a combination of photosynthesis, sediment trapping, and calcium carbonate precipitation. Not only do they support biodiversity, but they also play a vital role in natural carbon sequestration. 

UFS researchers are harnessing the lessons from these ancient formations to address urgent environmental challenges. In particular, Dr Yolandi Schoeman, Senior Lecturer at the Centre for Biogeochemistry, is leading efforts to cultivate hybrid stromatolites in controlled environments, using microbial consortia grown on 3D-printed scaffolds.  

“At UFS, we are reimagining stromatolite formation through both artificial structural replication and biological cultivation, bridging industrial ecology and microbial engineering to address modern environmental challenges,” says Dr Schoeman. 

 

Ecological engineering for reef restoration 

The rapid decline of marine biodiversity and the degradation of natural reef ecosystems have prompted ecological engineers to develop innovative solutions. At the UFS Green Concrete Lab, researchers are pioneering the design of artificial reefs using 3D-printed, low-carbon geopolymer concrete – a material formulated from industrial by-products such as fly ash and slag. 

Artificial reefs mimic natural reef complexity and serve as critical habitats for marine life, from fish and crustaceans to coral polyps and algae. Algae, in particular, are key to marine ecosystems due to their roles in nutrient cycling, oxygen production, and carbon capture. 

“Green concrete refers to concrete that utilises alternative binders and industrial by-products, significantly reducing the environmental footprint. At UFS, we are focusing on geopolymer concrete, which eliminates the high-energy processes associated with Portland cement, while offering greater chemical resistance - ideal for marine applications,” explains Dr Abdolhossein Naghizadeh from the Unit of Engineering Sciences. 

 

3D printing nature’s complexity 

One of the challenges in artificial reef development is replicating biologically inspired geometries that support diverse marine ecosystems. Traditional construction methods often fail in this regard, but additive manufacturing, or 3D concrete printing, is providing a solution.  

The UFS Green Concrete Lab, in collaboration with the University of Johannesburg, is developing reef modules with intricate geometries and natural surface textures. These features support coral and algae attachment, accelerate ecological colonisation, and enhance habitat functionality. Biochar-based compost filters are also being integrated to aid algae-driven wastewater treatment. 

A particularly novel avenue of research involves using 3D printing to recreate stromatolite structures. These serve as ancient blueprints for modern reef design, merging deep-time ecological understanding with advanced material science. 

 

Biologically engineered hybrid stromatolites  

In parallel to structural efforts, UFS is advancing biological approaches to stromatolite cultivation. From July 2025, researchers in the Unit of Engineering Sciences will initiate a large-scale experiment using microbial consortia in 60-litre tanks, scaling up to 1 m² hypersaline ponds. 3D-printed conical scaffolds, coated with materials such as PP-CaCO₃, hydroxyapatite, and silica gel, will accelerate microbial colonisation and lamination. 

The goal: to achieve stromatolite growth of 14-16 mm in just 28 days - over 150 times faster than in nature. These hybrid systems are expected to produce 7-8 mg/L/day of oxygen, sequester carbon at 3.2 g/m²/day, and remove up to 90% of nitrates and phosphates from water. The potential applications extend from terrestrial ecosystem restoration to extraterrestrial life-support systems. 

 

A multidisciplinary vision for sustainability 

This work exemplifies the strength of interdisciplinary research at UFS, combining civil engineering, mechatronics, marine ecology, chemistry, microbiology, and digital fabrication. The Ecological Engineering Sciences stream fosters a vibrant environment for postgraduate students to develop practical, impactful solutions.  

The Green Concrete Lab is central to these efforts, offering students and researchers access to advanced technologies and collaborative networks. Through their innovative work in 3D-printed green concrete and microbial systems, UFS researchers are addressing biodiversity loss, advancing sustainable construction, and contributing to the global climate agenda. 

“Whether it's rethinking materials, restoring ecosystems, or redefining what concrete can be, our research is laying the foundation for a better, more sustainable world beneath the waves,” concludes Dr Maritz. 

News Archive

National Human Trafficking Resource Line a victim-centred approach to combating crime
2017-08-24

Description: Beatri Kruger Tags: Beatri Kruger 

Prof Beatri Kruger, Adjunct Professor at the
UFS Faculty of Law. Photo: Supplied

As a response to the rising number of human trafficking cases in South Africa and around the world, key role players in various fields have pulled together to come up with workable solutions on how to stop the crime and assist victims. Some of the work being done by NGOs and law enforcement agencies has been supported by insights from research conducted in communities and by academic institutions. According to Prof Beatri Kruger, Adjunct Professor of Law in the Faculty of Law at the University of the Free State and experienced researcher in human trafficking, support for victims has grown in leaps and bounds with the help of the latest technology. More and better quality information can be collected to strengthen efforts of combating the crime,” she said.

One such technological development is the national Human Trafficking Resource Line, which provides various services, including information on trafficking activities, assistance to agencies working with victims of trafficking in persons (TIP), creating a network from which data can be collected, analysed, and activities tracked, in order to ensure the best service to victims.

The resource line connects callers, often victims of TIP or anonymous tippers, to service providers in social services, law enforcement, places of safety, medical facilities, and government agencies, especially during emergencies. 

Resource line a helping hand to victims

The resource line was established in 2016 and has replaced the previous helpline. This line provides more services and resources than just a helpline. Through partnerships, it works to strengthen local and national structures that can assist victims over the phone. 

Call specialists are trained by Polaris, an American company using international standards and protocols. The call specialists are available 24/7 to take reports of human trafficking confidentially and anonymously. They put victims in touch with service providers for health screening, counselling, and repatriation if they are from another country, and also assist with case management.

Empowering service providers is the key to success

Support for service providers such as NGOs, safe houses, and government departments in the network is in the form of skills training programmes for staff, and a referral system in various provinces around the country. There are good referral partners in each province, as well as provincial coordinators ensuring accountability regarding cases, mobilising services for victims, and coordinating the referrals and response.  

To strengthen the network further, services provided in each province are being standardised to ensure that the right people are contacted when handling cases, and that key stakeholders in each province are used. The strength of the provincial provider network is key to offering victims of human trafficking the services they need.

Human trafficking is a crime that permeates multiple academic disciplines and professions. Therefore, information collected from victims through such a helpline and collated by agencies, will assist academic institutions such as the UFS in furthering their research, while strengthening the content of academic programmes in fields such as law, law enforcement, social sciences, health sciences, and international relations.

The number to call for reporting or providing tips on TIP-related crimes and activities, is 0800 222 777.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept