Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story University of the Free State | Photo Supplied
Dr Hossein Naghizadeh and Refilwe Lediga
Collaborative innovation in action: Researchers from the University of the Free State’s Green Concrete Lab have partnered with the University of Johannesburg to advance 3D printing technologies using sustainable concrete materials. Pictured (from left): Dr Hossein Naghizadeh, Senior Lecturer in Engineering Sciences at UFS, and Refilwe Lediga, Concrete Printing Research Expert in the Department of Civil Engineering Technology at UJ.

In an ambitious and interdisciplinary effort to address today’s Grand Challenges, researchers at the University of the Free State (UFS) are exploring how nature’s oldest life forms – stromatolites – can inspire cutting-edge innovations in industrial ecology and marine conservation.  Drawing from biomimicry, 3D printing, and microbial engineering, their work showcases the convergence of ecological insight with modern technology. 

“One such example is replicating the structures of stromatolites – some of the earliest evidence of life - using green cement and 3D printing, the latest technology in industrial ecology,” explains Dr Jacques Maritz, Head of the Unit of Engineering Sciences at UFS. 

 

Ancient structures, modern science  

Stromatolites are layered microbial formations created by ancient cyanobacteria and date back over 3.5 billion years. These living fossils, found in fossil records and rare modern environments like Shark Bay in Australia, grow through a combination of photosynthesis, sediment trapping, and calcium carbonate precipitation. Not only do they support biodiversity, but they also play a vital role in natural carbon sequestration. 

UFS researchers are harnessing the lessons from these ancient formations to address urgent environmental challenges. In particular, Dr Yolandi Schoeman, Senior Lecturer at the Centre for Biogeochemistry, is leading efforts to cultivate hybrid stromatolites in controlled environments, using microbial consortia grown on 3D-printed scaffolds.  

“At UFS, we are reimagining stromatolite formation through both artificial structural replication and biological cultivation, bridging industrial ecology and microbial engineering to address modern environmental challenges,” says Dr Schoeman. 

 

Ecological engineering for reef restoration 

The rapid decline of marine biodiversity and the degradation of natural reef ecosystems have prompted ecological engineers to develop innovative solutions. At the UFS Green Concrete Lab, researchers are pioneering the design of artificial reefs using 3D-printed, low-carbon geopolymer concrete – a material formulated from industrial by-products such as fly ash and slag. 

Artificial reefs mimic natural reef complexity and serve as critical habitats for marine life, from fish and crustaceans to coral polyps and algae. Algae, in particular, are key to marine ecosystems due to their roles in nutrient cycling, oxygen production, and carbon capture. 

“Green concrete refers to concrete that utilises alternative binders and industrial by-products, significantly reducing the environmental footprint. At UFS, we are focusing on geopolymer concrete, which eliminates the high-energy processes associated with Portland cement, while offering greater chemical resistance - ideal for marine applications,” explains Dr Abdolhossein Naghizadeh from the Unit of Engineering Sciences. 

 

3D printing nature’s complexity 

One of the challenges in artificial reef development is replicating biologically inspired geometries that support diverse marine ecosystems. Traditional construction methods often fail in this regard, but additive manufacturing, or 3D concrete printing, is providing a solution.  

The UFS Green Concrete Lab, in collaboration with the University of Johannesburg, is developing reef modules with intricate geometries and natural surface textures. These features support coral and algae attachment, accelerate ecological colonisation, and enhance habitat functionality. Biochar-based compost filters are also being integrated to aid algae-driven wastewater treatment. 

A particularly novel avenue of research involves using 3D printing to recreate stromatolite structures. These serve as ancient blueprints for modern reef design, merging deep-time ecological understanding with advanced material science. 

 

Biologically engineered hybrid stromatolites  

In parallel to structural efforts, UFS is advancing biological approaches to stromatolite cultivation. From July 2025, researchers in the Unit of Engineering Sciences will initiate a large-scale experiment using microbial consortia in 60-litre tanks, scaling up to 1 m² hypersaline ponds. 3D-printed conical scaffolds, coated with materials such as PP-CaCO₃, hydroxyapatite, and silica gel, will accelerate microbial colonisation and lamination. 

The goal: to achieve stromatolite growth of 14-16 mm in just 28 days - over 150 times faster than in nature. These hybrid systems are expected to produce 7-8 mg/L/day of oxygen, sequester carbon at 3.2 g/m²/day, and remove up to 90% of nitrates and phosphates from water. The potential applications extend from terrestrial ecosystem restoration to extraterrestrial life-support systems. 

 

A multidisciplinary vision for sustainability 

This work exemplifies the strength of interdisciplinary research at UFS, combining civil engineering, mechatronics, marine ecology, chemistry, microbiology, and digital fabrication. The Ecological Engineering Sciences stream fosters a vibrant environment for postgraduate students to develop practical, impactful solutions.  

The Green Concrete Lab is central to these efforts, offering students and researchers access to advanced technologies and collaborative networks. Through their innovative work in 3D-printed green concrete and microbial systems, UFS researchers are addressing biodiversity loss, advancing sustainable construction, and contributing to the global climate agenda. 

“Whether it's rethinking materials, restoring ecosystems, or redefining what concrete can be, our research is laying the foundation for a better, more sustainable world beneath the waves,” concludes Dr Maritz. 

News Archive

UFS academics serve high in ranks of Cereal Science institutions
2017-10-10

Description: Cereal Science Tags: Cereal Science

Dr Angie van Biljon, Senior Lecturer in the Department of Plant Sciences at the University of the Free State (UFS), was elected as president of Cereal Science and Technology South Africa (CST-SA) at their bi-annual general meeting, in Pretoria.

Prof Maryke Labuschagne, Professor in Plant Breeding at the UFS and official representative of South Africa in the American Association for Cereal Chemists International from 2007, was re-elected as the South African representative to the American Association for Cereal Chemists. She attends the annual conference in the US as well as the International Association for Cereal Science and Technology (the European counterpart of AACC) regularly. “I use these conferences to report on the research done by the research team at the UFS on gluten protein, baking quality and nutritional value of cereals,” she said.

Prof. Labuschagne was also involved in a training course for the baking industry. 

Both Dr Van Biljon and Prof Labuschagne are involved in research on wheat gluten proteins, which is critical to the baking industry. CST-SA is a platform to disseminate this and other research, not only locally but also internationally. The aim of this society is to advance cereal science and technology both in the public sector and in the industry of Southern Africa.

CST-SA creates an opportunity for staff and
students working on cereals to interact
with the industry. This prevents research
from being just academic and creates
an opportunity to bring the research and the
industry together.

Wheat research not just academic
According to Prof Labuschagne CST-SA creates an opportunity for staff and students working on cereals to interact with the industry. This prevents research from being just academic and creates an opportunity to bring the research and the industry together. This has been very useful for students at the university working on cereals, as they have made presentations at the “New Voices” symposium, a forum for postgraduate students to present their research.

“Through CST-SA we have also, through the years, presented our research on an international level at the annual meetings of the American Association for Cereal Chemists and the International Association for Cereal Science and Technology,,” said Prof Labuschagne.

The science of cereals
CST-SA is an association of organisations and individuals, from both the private and public sectors, who are actively involved in the science and technology of cereals. Its aim is to promote the dissemination of knowledge and information on cereal science and technology through meetings, publications, workshops and other means. CST-SA also organises training courses for the industry. In the past years there was a course for the baking industry and one for the milling industry and also the “New Voices” symposium”.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept