Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story University of the Free State | Photo Supplied
Dr Hossein Naghizadeh and Refilwe Lediga
Collaborative innovation in action: Researchers from the University of the Free State’s Green Concrete Lab have partnered with the University of Johannesburg to advance 3D printing technologies using sustainable concrete materials. Pictured (from left): Dr Hossein Naghizadeh, Senior Lecturer in Engineering Sciences at UFS, and Refilwe Lediga, Concrete Printing Research Expert in the Department of Civil Engineering Technology at UJ.

In an ambitious and interdisciplinary effort to address today’s Grand Challenges, researchers at the University of the Free State (UFS) are exploring how nature’s oldest life forms – stromatolites – can inspire cutting-edge innovations in industrial ecology and marine conservation.  Drawing from biomimicry, 3D printing, and microbial engineering, their work showcases the convergence of ecological insight with modern technology. 

“One such example is replicating the structures of stromatolites – some of the earliest evidence of life - using green cement and 3D printing, the latest technology in industrial ecology,” explains Dr Jacques Maritz, Head of the Unit of Engineering Sciences at UFS. 

 

Ancient structures, modern science  

Stromatolites are layered microbial formations created by ancient cyanobacteria and date back over 3.5 billion years. These living fossils, found in fossil records and rare modern environments like Shark Bay in Australia, grow through a combination of photosynthesis, sediment trapping, and calcium carbonate precipitation. Not only do they support biodiversity, but they also play a vital role in natural carbon sequestration. 

UFS researchers are harnessing the lessons from these ancient formations to address urgent environmental challenges. In particular, Dr Yolandi Schoeman, Senior Lecturer at the Centre for Biogeochemistry, is leading efforts to cultivate hybrid stromatolites in controlled environments, using microbial consortia grown on 3D-printed scaffolds.  

“At UFS, we are reimagining stromatolite formation through both artificial structural replication and biological cultivation, bridging industrial ecology and microbial engineering to address modern environmental challenges,” says Dr Schoeman. 

 

Ecological engineering for reef restoration 

The rapid decline of marine biodiversity and the degradation of natural reef ecosystems have prompted ecological engineers to develop innovative solutions. At the UFS Green Concrete Lab, researchers are pioneering the design of artificial reefs using 3D-printed, low-carbon geopolymer concrete – a material formulated from industrial by-products such as fly ash and slag. 

Artificial reefs mimic natural reef complexity and serve as critical habitats for marine life, from fish and crustaceans to coral polyps and algae. Algae, in particular, are key to marine ecosystems due to their roles in nutrient cycling, oxygen production, and carbon capture. 

“Green concrete refers to concrete that utilises alternative binders and industrial by-products, significantly reducing the environmental footprint. At UFS, we are focusing on geopolymer concrete, which eliminates the high-energy processes associated with Portland cement, while offering greater chemical resistance - ideal for marine applications,” explains Dr Abdolhossein Naghizadeh from the Unit of Engineering Sciences. 

 

3D printing nature’s complexity 

One of the challenges in artificial reef development is replicating biologically inspired geometries that support diverse marine ecosystems. Traditional construction methods often fail in this regard, but additive manufacturing, or 3D concrete printing, is providing a solution.  

The UFS Green Concrete Lab, in collaboration with the University of Johannesburg, is developing reef modules with intricate geometries and natural surface textures. These features support coral and algae attachment, accelerate ecological colonisation, and enhance habitat functionality. Biochar-based compost filters are also being integrated to aid algae-driven wastewater treatment. 

A particularly novel avenue of research involves using 3D printing to recreate stromatolite structures. These serve as ancient blueprints for modern reef design, merging deep-time ecological understanding with advanced material science. 

 

Biologically engineered hybrid stromatolites  

In parallel to structural efforts, UFS is advancing biological approaches to stromatolite cultivation. From July 2025, researchers in the Unit of Engineering Sciences will initiate a large-scale experiment using microbial consortia in 60-litre tanks, scaling up to 1 m² hypersaline ponds. 3D-printed conical scaffolds, coated with materials such as PP-CaCO₃, hydroxyapatite, and silica gel, will accelerate microbial colonisation and lamination. 

The goal: to achieve stromatolite growth of 14-16 mm in just 28 days - over 150 times faster than in nature. These hybrid systems are expected to produce 7-8 mg/L/day of oxygen, sequester carbon at 3.2 g/m²/day, and remove up to 90% of nitrates and phosphates from water. The potential applications extend from terrestrial ecosystem restoration to extraterrestrial life-support systems. 

 

A multidisciplinary vision for sustainability 

This work exemplifies the strength of interdisciplinary research at UFS, combining civil engineering, mechatronics, marine ecology, chemistry, microbiology, and digital fabrication. The Ecological Engineering Sciences stream fosters a vibrant environment for postgraduate students to develop practical, impactful solutions.  

The Green Concrete Lab is central to these efforts, offering students and researchers access to advanced technologies and collaborative networks. Through their innovative work in 3D-printed green concrete and microbial systems, UFS researchers are addressing biodiversity loss, advancing sustainable construction, and contributing to the global climate agenda. 

“Whether it's rethinking materials, restoring ecosystems, or redefining what concrete can be, our research is laying the foundation for a better, more sustainable world beneath the waves,” concludes Dr Maritz. 

News Archive

Two UFS architecture students won prestigious PG Bison 1.618 Competition
2017-10-26

 Description: Bison read more Tags: : Stephan Diedericks, Department of Architecture, Margaux Loubser, Kobus du Preez, Zack Wessels, PG Bison 1.168 Competition 

At the PG Bison 1.618 competition awards ceremony
in Rosebank, were from the left:
Camrin Plaatjes from the University of KwaZulu-Natal;
Stephan Diedericks, winner of the competition;
and Margaux Loubser,
the second-place winner. Both Stephan and
Margaux are studying Architecture at the UFS.
Photo: Supplied



Food that reaches its sell-by date in supermarkets is usually disposed of, but has not yet reached its best-before date.  What happens to this food?  According to Stephan Diedericks, the answer to this is for this food to be repurposed.

Not only does Stephan want to prevent the waste of food – in a world where food security is a challenge – but he also won the prestigious PG Bison 1.618 Competition with his entry in which he suggests that gourmet meals be prepared from food that has reached its sell-by date, and then be served in the Delta Recycletorium. 

Students introduced to park lands in urban areas
Diedericks is a student in the Department of Architecture at the University of the Free State (UFS). Second-place winner in this competition was Margaux Loubser, also a UFS student. Another UFS student, Dehan Kassimatis, was a finalist. They received their awards at a ceremony in Rosebank, Johannesburg, earlier this month. 

The competition, now in its 24th year, was created to recognise the future interior and industrial designers, architects, and key decision-makers in the South African construction industry. It is known not only for the prestige it offers its winners, but also for the tradition-defying brief given to the students each year.

According to lecturers Kobus du Preez and Zak Wessels, in the Department of Architecture, the competition introduced the students to parklands in urban areas. He quotes the competition brief: “Rural to urban migration with the development of commercial and residential property elevates the importance of parklands within cities, in creating a refuge from the hustle of daily life.  These areas are leveraged to encourage healthier living, community interaction and environmental awareness.”

Learning experience more important than prizes
The site that was the focus of the competition is the Environmental Centre, Delta Park Heritage Precinct in Johannesburg. Students needed to transform this old building into a vibrant gastronomic restaurant. “The theme and style of the restaurant was for the student to choose,” said Du Preez. 

Loubser called her restaurant Rooted – a wholefood restaurant.  She was influenced by the geometries of the original Art Deco building. Rooted articulates and integrates the space between nature and the building.  Similar to an Art Deco painting or poster, the landscape is abstracted into terraces which are used to grow vegetables organically.  Vertical green screens soften the divide between the building and its surroundings and it provides shade.

“Our students took their clues from the existing environment and integrated it with a single idea, an abstract concept, which impressed the judges,” Du Preez said. 

Although this is a competition that is well reported in the industry press, Du Preez and Wessels agree that the learning experience for students is much more important than winning the contest. The competition’s brief aligned well with the Department of Architecture’s learning content with its urban focus.

Jacques Steyn, a UFS architecture student, came third in the competition in 2015.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept