Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story University of the Free State | Photo Supplied
Dr Hossein Naghizadeh and Refilwe Lediga
Collaborative innovation in action: Researchers from the University of the Free State’s Green Concrete Lab have partnered with the University of Johannesburg to advance 3D printing technologies using sustainable concrete materials. Pictured (from left): Dr Hossein Naghizadeh, Senior Lecturer in Engineering Sciences at UFS, and Refilwe Lediga, Concrete Printing Research Expert in the Department of Civil Engineering Technology at UJ.

In an ambitious and interdisciplinary effort to address today’s Grand Challenges, researchers at the University of the Free State (UFS) are exploring how nature’s oldest life forms – stromatolites – can inspire cutting-edge innovations in industrial ecology and marine conservation.  Drawing from biomimicry, 3D printing, and microbial engineering, their work showcases the convergence of ecological insight with modern technology. 

“One such example is replicating the structures of stromatolites – some of the earliest evidence of life - using green cement and 3D printing, the latest technology in industrial ecology,” explains Dr Jacques Maritz, Head of the Unit of Engineering Sciences at UFS. 

 

Ancient structures, modern science  

Stromatolites are layered microbial formations created by ancient cyanobacteria and date back over 3.5 billion years. These living fossils, found in fossil records and rare modern environments like Shark Bay in Australia, grow through a combination of photosynthesis, sediment trapping, and calcium carbonate precipitation. Not only do they support biodiversity, but they also play a vital role in natural carbon sequestration. 

UFS researchers are harnessing the lessons from these ancient formations to address urgent environmental challenges. In particular, Dr Yolandi Schoeman, Senior Lecturer at the Centre for Biogeochemistry, is leading efforts to cultivate hybrid stromatolites in controlled environments, using microbial consortia grown on 3D-printed scaffolds.  

“At UFS, we are reimagining stromatolite formation through both artificial structural replication and biological cultivation, bridging industrial ecology and microbial engineering to address modern environmental challenges,” says Dr Schoeman. 

 

Ecological engineering for reef restoration 

The rapid decline of marine biodiversity and the degradation of natural reef ecosystems have prompted ecological engineers to develop innovative solutions. At the UFS Green Concrete Lab, researchers are pioneering the design of artificial reefs using 3D-printed, low-carbon geopolymer concrete – a material formulated from industrial by-products such as fly ash and slag. 

Artificial reefs mimic natural reef complexity and serve as critical habitats for marine life, from fish and crustaceans to coral polyps and algae. Algae, in particular, are key to marine ecosystems due to their roles in nutrient cycling, oxygen production, and carbon capture. 

“Green concrete refers to concrete that utilises alternative binders and industrial by-products, significantly reducing the environmental footprint. At UFS, we are focusing on geopolymer concrete, which eliminates the high-energy processes associated with Portland cement, while offering greater chemical resistance - ideal for marine applications,” explains Dr Abdolhossein Naghizadeh from the Unit of Engineering Sciences. 

 

3D printing nature’s complexity 

One of the challenges in artificial reef development is replicating biologically inspired geometries that support diverse marine ecosystems. Traditional construction methods often fail in this regard, but additive manufacturing, or 3D concrete printing, is providing a solution.  

The UFS Green Concrete Lab, in collaboration with the University of Johannesburg, is developing reef modules with intricate geometries and natural surface textures. These features support coral and algae attachment, accelerate ecological colonisation, and enhance habitat functionality. Biochar-based compost filters are also being integrated to aid algae-driven wastewater treatment. 

A particularly novel avenue of research involves using 3D printing to recreate stromatolite structures. These serve as ancient blueprints for modern reef design, merging deep-time ecological understanding with advanced material science. 

 

Biologically engineered hybrid stromatolites  

In parallel to structural efforts, UFS is advancing biological approaches to stromatolite cultivation. From July 2025, researchers in the Unit of Engineering Sciences will initiate a large-scale experiment using microbial consortia in 60-litre tanks, scaling up to 1 m² hypersaline ponds. 3D-printed conical scaffolds, coated with materials such as PP-CaCO₃, hydroxyapatite, and silica gel, will accelerate microbial colonisation and lamination. 

The goal: to achieve stromatolite growth of 14-16 mm in just 28 days - over 150 times faster than in nature. These hybrid systems are expected to produce 7-8 mg/L/day of oxygen, sequester carbon at 3.2 g/m²/day, and remove up to 90% of nitrates and phosphates from water. The potential applications extend from terrestrial ecosystem restoration to extraterrestrial life-support systems. 

 

A multidisciplinary vision for sustainability 

This work exemplifies the strength of interdisciplinary research at UFS, combining civil engineering, mechatronics, marine ecology, chemistry, microbiology, and digital fabrication. The Ecological Engineering Sciences stream fosters a vibrant environment for postgraduate students to develop practical, impactful solutions.  

The Green Concrete Lab is central to these efforts, offering students and researchers access to advanced technologies and collaborative networks. Through their innovative work in 3D-printed green concrete and microbial systems, UFS researchers are addressing biodiversity loss, advancing sustainable construction, and contributing to the global climate agenda. 

“Whether it's rethinking materials, restoring ecosystems, or redefining what concrete can be, our research is laying the foundation for a better, more sustainable world beneath the waves,” concludes Dr Maritz. 

News Archive

Traffic in translation between French and Afrikaans follows unique direction
2017-11-21

 Description: Traffic in translation between French and Afrikaans  Tags: Traffic in translation between French and Afrikaans

At Prof Naòmi Morgan’s inaugural lecture were, from the left:
Profs Corli Witthuhn, Vice-Rector: Research; Morgan;
Heidi Hudson, Acting Dean of the Faculty of the Humanities;
and Angelique van Niekerk, Head of the Department of Afrikaans
and Dutch, German and French.
Photo: Stephen Collett

Translation is normally done from a so-called weaker language into a mightier one. This is one of the ways, according to author Antjie Krog in her book A Change of Tongue, which is used by a ‘weaker’ language to help it survive.

However, according to Prof Naòmi Morgan, Head of French in the Department of Afrikaans and Dutch, German and French at the University of the Free State (UFS), this is not the case with French, which is the mightier language, and Afrikaans.

Influence of translators on Afrikaans

“The number of translated titles from French into Afrikaans, from ‘great’ into ‘lesser’ language, is far more than the other way round, almost as if the translators wanted to make the Afrikaans-speaking readers literary self-sufficient, but did not feel the same need to extend the Afrikaans literature into other languages.”

This was Prof Morgan’s words on 8 November 2017 during her inaugural lecture entitled, Van Frans na Afrikaans: 100 jaar van byna eenrigting-vertaalverkeer, in the Equitas Auditorium on the Bloemfontein Campus. A PowerPoint presentation, with a symbolic background of the South African and French flags and relevant texts, formed part of her lecture. She also played video clips and pieces of music to complement it.

Among others, she has a doctorate in Modern French Literature from the University of Geneva, and her translations have earned her a French Knighthood and various prizes. She is also well-known for her translations and involvement in dramas such as Oskar en die Pienk Tannie and Monsieur Ibrahim en die blomme van die Koran.

Greater challenges in this direction

In her lecture, she looked at the two-way traffic from French into Afrikaans and from Afrikaans into French.

Three French citizens, Pierre-Marie Finkelstein, Georges Lory, and Donald Moerdijk, have translated from Afrikaans into French. Of course, their background and ties with South Africa also had an influence on their work. “In Moerdijk’s case, translation from Afrikaans, his second language, was a way in which to recall the country he left in his mind’s eye,” she said.

Prof Morgan is one of only two translators who translates works from Afrikaans into French, the other being Catherine du Toit. However, translations in this direction pose greater challenges. She said it involves “not only knowledge of the language, but also knowledge of the French target culture and literature”. In addition, there aren’t any good bilingual dictionaries, and the only Afrikaans-French dictionary is a thin volume by B Strelen and HL Gonin dating from 1950.

Prof Morgan still believes in translation

She believes there is a need to hear foreign languages such as French in the form of music in Afrikaans, and the speaking of a language alone might not be enough to ensure its survival. 

She still believes in translation, and quoted Salman Rushdie’s Imaginary homelands: essays and criticism 1981-1991 in this respect: “The word ‘translation’ comes, etymologically, from the Latin for ‘bearing across’. Having been borne across the world, we are translated men. It is normally supposed that something always gets lost in translation; I cling, obstinately to the notion that something can also be gained.”

Click here for Prof Morgan’s full lecture (only available in Afrikaans).

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept