Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story University of the Free State | Photo Supplied
Dr Hossein Naghizadeh and Refilwe Lediga
Collaborative innovation in action: Researchers from the University of the Free State’s Green Concrete Lab have partnered with the University of Johannesburg to advance 3D printing technologies using sustainable concrete materials. Pictured (from left): Dr Hossein Naghizadeh, Senior Lecturer in Engineering Sciences at UFS, and Refilwe Lediga, Concrete Printing Research Expert in the Department of Civil Engineering Technology at UJ.

In an ambitious and interdisciplinary effort to address today’s Grand Challenges, researchers at the University of the Free State (UFS) are exploring how nature’s oldest life forms – stromatolites – can inspire cutting-edge innovations in industrial ecology and marine conservation.  Drawing from biomimicry, 3D printing, and microbial engineering, their work showcases the convergence of ecological insight with modern technology. 

“One such example is replicating the structures of stromatolites – some of the earliest evidence of life - using green cement and 3D printing, the latest technology in industrial ecology,” explains Dr Jacques Maritz, Head of the Unit of Engineering Sciences at UFS. 

 

Ancient structures, modern science  

Stromatolites are layered microbial formations created by ancient cyanobacteria and date back over 3.5 billion years. These living fossils, found in fossil records and rare modern environments like Shark Bay in Australia, grow through a combination of photosynthesis, sediment trapping, and calcium carbonate precipitation. Not only do they support biodiversity, but they also play a vital role in natural carbon sequestration. 

UFS researchers are harnessing the lessons from these ancient formations to address urgent environmental challenges. In particular, Dr Yolandi Schoeman, Senior Lecturer at the Centre for Biogeochemistry, is leading efforts to cultivate hybrid stromatolites in controlled environments, using microbial consortia grown on 3D-printed scaffolds.  

“At UFS, we are reimagining stromatolite formation through both artificial structural replication and biological cultivation, bridging industrial ecology and microbial engineering to address modern environmental challenges,” says Dr Schoeman. 

 

Ecological engineering for reef restoration 

The rapid decline of marine biodiversity and the degradation of natural reef ecosystems have prompted ecological engineers to develop innovative solutions. At the UFS Green Concrete Lab, researchers are pioneering the design of artificial reefs using 3D-printed, low-carbon geopolymer concrete – a material formulated from industrial by-products such as fly ash and slag. 

Artificial reefs mimic natural reef complexity and serve as critical habitats for marine life, from fish and crustaceans to coral polyps and algae. Algae, in particular, are key to marine ecosystems due to their roles in nutrient cycling, oxygen production, and carbon capture. 

“Green concrete refers to concrete that utilises alternative binders and industrial by-products, significantly reducing the environmental footprint. At UFS, we are focusing on geopolymer concrete, which eliminates the high-energy processes associated with Portland cement, while offering greater chemical resistance - ideal for marine applications,” explains Dr Abdolhossein Naghizadeh from the Unit of Engineering Sciences. 

 

3D printing nature’s complexity 

One of the challenges in artificial reef development is replicating biologically inspired geometries that support diverse marine ecosystems. Traditional construction methods often fail in this regard, but additive manufacturing, or 3D concrete printing, is providing a solution.  

The UFS Green Concrete Lab, in collaboration with the University of Johannesburg, is developing reef modules with intricate geometries and natural surface textures. These features support coral and algae attachment, accelerate ecological colonisation, and enhance habitat functionality. Biochar-based compost filters are also being integrated to aid algae-driven wastewater treatment. 

A particularly novel avenue of research involves using 3D printing to recreate stromatolite structures. These serve as ancient blueprints for modern reef design, merging deep-time ecological understanding with advanced material science. 

 

Biologically engineered hybrid stromatolites  

In parallel to structural efforts, UFS is advancing biological approaches to stromatolite cultivation. From July 2025, researchers in the Unit of Engineering Sciences will initiate a large-scale experiment using microbial consortia in 60-litre tanks, scaling up to 1 m² hypersaline ponds. 3D-printed conical scaffolds, coated with materials such as PP-CaCO₃, hydroxyapatite, and silica gel, will accelerate microbial colonisation and lamination. 

The goal: to achieve stromatolite growth of 14-16 mm in just 28 days - over 150 times faster than in nature. These hybrid systems are expected to produce 7-8 mg/L/day of oxygen, sequester carbon at 3.2 g/m²/day, and remove up to 90% of nitrates and phosphates from water. The potential applications extend from terrestrial ecosystem restoration to extraterrestrial life-support systems. 

 

A multidisciplinary vision for sustainability 

This work exemplifies the strength of interdisciplinary research at UFS, combining civil engineering, mechatronics, marine ecology, chemistry, microbiology, and digital fabrication. The Ecological Engineering Sciences stream fosters a vibrant environment for postgraduate students to develop practical, impactful solutions.  

The Green Concrete Lab is central to these efforts, offering students and researchers access to advanced technologies and collaborative networks. Through their innovative work in 3D-printed green concrete and microbial systems, UFS researchers are addressing biodiversity loss, advancing sustainable construction, and contributing to the global climate agenda. 

“Whether it's rethinking materials, restoring ecosystems, or redefining what concrete can be, our research is laying the foundation for a better, more sustainable world beneath the waves,” concludes Dr Maritz. 

News Archive

Institutional research culture a precondition for research capacity building and excellence
2004-11-16

A lecture presented by Dr. Andrew M. Kaniki at the University of the Free State Recognition Function for research excellence

16 November 2004
The Vice Chancellor, Prof. Frederick Fourie
Deputy Vice Chancellors, Deans
Awardees
Colleagues and ladies and gentlemen

It is a great pleasure to be here at the University of the Free State. I am particularly honoured to have been invited to present this lecture at the First Annual Recognition Function for Research Excellence to honour researchers who have excelled in their respective fields of expertise. I would like to sincerely thank the office of the Director of Research and Development (Professor Swanepol), and in particular Mr. Aldo Stroebel for facilitating the invitation to this celebration.

I would like to congratulate you (the UFS) for institutionalizing “celebration of research excellence”, which as I will argue in this lecture is one of the key characteristics of institutional research culture that supports research capacity building and sustains research excellence.

Allow me to also take this opportunity to congratulate the University of the Free State for clocking 100 years of existence.

Ahmed Bawa and Johan Mouton (2000) in their chapter entitled Research, in the book: Transformation in higher education: global pressures and local realities in South Africa (ed. N. Cloete et. al Pretoria: CHET. 296-333) have argued that “…the sources of productivity and competitiveness [in the knowledge society and global economy] are increasingly dependent on [quality] knowledge and information being applied to productivity”. The quality knowledge they refer to here is research output or research products and the research process, which (research) as defined by the [OECD] Frascati Manual (2002: 30) is:

“…creative work undertaken on a systematic basis in order to increase the stock of knowledge, including knowledge of man, culture and society, and the use of this stock of knowledge to devise new applications”

The South African Government has set itself the objective of transforming South Africa into a knowledge society that competes effectively in the global system. A knowledge society requires appropriate numbers of educated and skilled people to create quality new knowledge and to translate the knowledge in innovative ways. To this end a number of policies and strategies like the Human Resource Development [HRD] Strategy for South Africa, the National Plan for Higher Education (NPHE) and the South Africa’s Research and Development [R&D] Strategy, have highlighted human resource development and the concomitant scarce skills development as critical for wealth creation in the context of globalization. The key mission of the HRD Strategy for instance is:

To maximize the potential of the people of South Africa, through the acquisition of knowledge and skills, to work productively and competitively in order to achieve a rising quality of life for all, and to set in place an operational plan, together with the necessary institutional arrangements, to achieve this.

The R&D Strategy emphasizes that maximum effort must be exerted to train the necessary numbers of our people in all fields required for development, running and management of modern economies. Higher education institutions like the University of the Free State have a key role to play in this process, because whatever form or shape a university takes, it is expected to conduct research (quality research); teach (quality teaching – and good graduates); and contribute to the development of its community! Thus the NPHE states that the role of higher education in a knowledge-driven world is threefold:

Human resource development;

High-level skills training and

Production, acquisition and application of knowledge.

Quality research output or knowledge which as argued is critical in determining the degree of competitiveness of a country in the knowledge economy is dependent upon quality research (process). Both the process of producing quality research and its utilization cannot and does not happen in a vacuum. It requires an environment that facilitates the production of new knowledge, its utilization and renewal. It requires skilled persons that can produce new knowledge and facilitate the production of new skills for quality knowledge production. Such an environment or in essence a university must have the culture that supports research activity. Institution research culture (that is a conducive and enabling institutional research culture) is a precondition to research capacity building. Without an institutional research culture that facilitates the development and nurturing of new young researchers it is difficult, if not impossible for a university to effectively and efficiently generate new and more quality researchers. Institutional research culture is also necessary to sustain quality research and quality research output or research excellence. It facilitates the development and sustenance of the institutional and people capacities required to do research produce quality research and generally attain research excellence!

We do recognize that the patterns of information and knowledge seeking, and knowledge generation vary among field or disciplines. For example, we know that in the humanities knowledge workers often work individually, and not as collaboratively as do those of the sciences, they all however, require supportive environments – institutional research culture to achieve and sustain research excellence. An institution does not simply attain a supportive research culture, but as Patricia Clements (English Department, University of Alberta, Edmonton) in her presentation Growing a research culture argues, research culture has to be grown [and maintained]. It unifies all natural and engineering scientists; medical researchers, humanists, and social scientists.

I therefore am of the view that Institutional Research Culture is critical to research capacity building and research excellence. I therefore want to spend a few minutes looking at the characteristics of research culture. To be effective, institutional research culture has grown and sustained not only at the institutional level, but also at the faculty, school and departmental levels of any university.

What is Research Culture?

In the process of researching on institutional research culture I identified several characteristics. Many of these overlap in some way. I want to deal with some of these characteristics; some in a little more detail while others simply cursorily. In the process what we should be asking ourselves is the extent to which an institution, like the University of the Free State, and its faculties, individually and severally, is growing and or sustaining this culture.

Institutional Research Strategy: As a plan of action or guide for a course of action, the institutional research strategy must spell out research goals that a university wants to achieve. It must be a prescription of what the university needs to be done with respect to research. As a strategy it is neither an independent activity nor an end in itself, but a component part and operationalization of the university policy or mission. ( Related to this is the Establishment of Institutional research policies)

Includes and makes public the targets, e.g. achieve so many rated scientists and make sure that every year we have so many SAPSE publications. That way people keep an eye on research agendas of the university and nation.

The UFS is obviously on its way, having launched its own Research strategy (A Strategic framework for the development of research at the University of the Free Sate. August 2003). Note that this strategy refers specifically to the “Culture of research” Fig 1

A set of administrative practices to support and encourage research. Patricia Clements (English Department, University of Alberta, Edmonton) in her presentation Growing a research culture argues that that research activity and output within the her Faculty (Arts) were very low and, in spite of the numbers of staff, with no Associate Dean for Research in the Faculty as though they had accepted that research belonged to Medicine and Science and Engineering, and teaching, separated from inquiry, belonged to the Arts. With the change in the thinking about research and development of research culture, it became clear that there was a major role for research support in a faculty her size (now about 360 full time continuing academic staff). The faculty developed a support system for research and began to address the SSHRC issues.

Reduce the bureaucracy system and micromanagement of research! This however, also implies that there is capacity and policies and procedure to manage and guide research processes

Establishment of Intellectual Property regulations and assistance

Research ethics policy and safeguarding by research administration

Focused, applied and suitable nature of the delivery mode (an institution open to new methodologies for conducting research

Programmes suited both full and part-time study particularly at graduate level (Mainly at Faculty/school and department level, and depending on what’s manageable)

Hiring senior academics to engage in, teach on and supervise postgraduate students to facilitate exchange of and transfer ideas and most importantly mentorship especially in view of declining numbers of researchers in particular fields

Quality instruction and facilitation in learning about research processes

A high retention rate of students maintained by the supportive and challenging learning environment and the use of online facilities to support collaboration and in-class learning

Availability of research grants: and awareness of sourcing funds from external sources like the National Research Foundation; Water Research Commission; Medical Research Council, private philanthropies and others outside the country. For example an institution should be able to assess how much of the slice the available funds (NRF etc) its able acquire and possibly top slice from institutional budget.

Adequacy of the financial reward system to encourage university staff members to do research (General Celebration of achievement for research excellence and achievement. This ranges form Annual reports mention; celebratory dinner. At Alberta researchers were given lapels. I don’t know of any academic who do not feel a sense of achievement to get into print or recognised. Access to research facilities within and outside the institution

Provision of infrastructure to support university-based research (e.g. equipment, admin support, etc.) – but also awareness of publicly funded and available research facilities and equipment!

Internet connectivity and changes in the bandwidth of the internet to download articles

Subscription to related bodies by the library so that researcher can download articles

Facilities and resources to attend international conferences to keep one updated

Number of visiting professors/speakers targeting senior scholars and invite them to lunch to ask them to participate and to encourage their best graduate students to do so within the institution and across institutions

Research training seminars for research students including young academics

Participation of staff/students in delivering research papers to national and international conferences

Establishment of research groups to provide interaction frameworks to achieve critical mass of research-active staff

Facilitation for more research time: Targeting new scholars and giving them reduced teaching loads in their first year or two for the purpose of developing their research programs. For the purpose of helping new colleagues to see the shape of South African research support, personalizing it, and creating research community

Take research to the community and argue its necessity, and utility

And, finally celebrating excellence. We must recognize achievement - parties and public recognition for colleagues who achieve splendid things in their research.

In conclusion, I want to reemphasize that research culture has to be grown it does not simply exist in an institution. If it is grown it needs to be nourished, nurtured and sustained. An institution cannot simply leave on borrowed reputation and expect to remain research excellent. It is on this basis that instruments like the National Research Foundation rating system recognizes excellence within a given period of time and not necessarily for a life time! This it is believed encourages continued research excellence.

THANK YOU and best wishes

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept