Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story University of the Free State | Photo Supplied
Dr Hossein Naghizadeh and Refilwe Lediga
Collaborative innovation in action: Researchers from the University of the Free State’s Green Concrete Lab have partnered with the University of Johannesburg to advance 3D printing technologies using sustainable concrete materials. Pictured (from left): Dr Hossein Naghizadeh, Senior Lecturer in Engineering Sciences at UFS, and Refilwe Lediga, Concrete Printing Research Expert in the Department of Civil Engineering Technology at UJ.

In an ambitious and interdisciplinary effort to address today’s Grand Challenges, researchers at the University of the Free State (UFS) are exploring how nature’s oldest life forms – stromatolites – can inspire cutting-edge innovations in industrial ecology and marine conservation.  Drawing from biomimicry, 3D printing, and microbial engineering, their work showcases the convergence of ecological insight with modern technology. 

“One such example is replicating the structures of stromatolites – some of the earliest evidence of life - using green cement and 3D printing, the latest technology in industrial ecology,” explains Dr Jacques Maritz, Head of the Unit of Engineering Sciences at UFS. 

 

Ancient structures, modern science  

Stromatolites are layered microbial formations created by ancient cyanobacteria and date back over 3.5 billion years. These living fossils, found in fossil records and rare modern environments like Shark Bay in Australia, grow through a combination of photosynthesis, sediment trapping, and calcium carbonate precipitation. Not only do they support biodiversity, but they also play a vital role in natural carbon sequestration. 

UFS researchers are harnessing the lessons from these ancient formations to address urgent environmental challenges. In particular, Dr Yolandi Schoeman, Senior Lecturer at the Centre for Biogeochemistry, is leading efforts to cultivate hybrid stromatolites in controlled environments, using microbial consortia grown on 3D-printed scaffolds.  

“At UFS, we are reimagining stromatolite formation through both artificial structural replication and biological cultivation, bridging industrial ecology and microbial engineering to address modern environmental challenges,” says Dr Schoeman. 

 

Ecological engineering for reef restoration 

The rapid decline of marine biodiversity and the degradation of natural reef ecosystems have prompted ecological engineers to develop innovative solutions. At the UFS Green Concrete Lab, researchers are pioneering the design of artificial reefs using 3D-printed, low-carbon geopolymer concrete – a material formulated from industrial by-products such as fly ash and slag. 

Artificial reefs mimic natural reef complexity and serve as critical habitats for marine life, from fish and crustaceans to coral polyps and algae. Algae, in particular, are key to marine ecosystems due to their roles in nutrient cycling, oxygen production, and carbon capture. 

“Green concrete refers to concrete that utilises alternative binders and industrial by-products, significantly reducing the environmental footprint. At UFS, we are focusing on geopolymer concrete, which eliminates the high-energy processes associated with Portland cement, while offering greater chemical resistance - ideal for marine applications,” explains Dr Abdolhossein Naghizadeh from the Unit of Engineering Sciences. 

 

3D printing nature’s complexity 

One of the challenges in artificial reef development is replicating biologically inspired geometries that support diverse marine ecosystems. Traditional construction methods often fail in this regard, but additive manufacturing, or 3D concrete printing, is providing a solution.  

The UFS Green Concrete Lab, in collaboration with the University of Johannesburg, is developing reef modules with intricate geometries and natural surface textures. These features support coral and algae attachment, accelerate ecological colonisation, and enhance habitat functionality. Biochar-based compost filters are also being integrated to aid algae-driven wastewater treatment. 

A particularly novel avenue of research involves using 3D printing to recreate stromatolite structures. These serve as ancient blueprints for modern reef design, merging deep-time ecological understanding with advanced material science. 

 

Biologically engineered hybrid stromatolites  

In parallel to structural efforts, UFS is advancing biological approaches to stromatolite cultivation. From July 2025, researchers in the Unit of Engineering Sciences will initiate a large-scale experiment using microbial consortia in 60-litre tanks, scaling up to 1 m² hypersaline ponds. 3D-printed conical scaffolds, coated with materials such as PP-CaCO₃, hydroxyapatite, and silica gel, will accelerate microbial colonisation and lamination. 

The goal: to achieve stromatolite growth of 14-16 mm in just 28 days - over 150 times faster than in nature. These hybrid systems are expected to produce 7-8 mg/L/day of oxygen, sequester carbon at 3.2 g/m²/day, and remove up to 90% of nitrates and phosphates from water. The potential applications extend from terrestrial ecosystem restoration to extraterrestrial life-support systems. 

 

A multidisciplinary vision for sustainability 

This work exemplifies the strength of interdisciplinary research at UFS, combining civil engineering, mechatronics, marine ecology, chemistry, microbiology, and digital fabrication. The Ecological Engineering Sciences stream fosters a vibrant environment for postgraduate students to develop practical, impactful solutions.  

The Green Concrete Lab is central to these efforts, offering students and researchers access to advanced technologies and collaborative networks. Through their innovative work in 3D-printed green concrete and microbial systems, UFS researchers are addressing biodiversity loss, advancing sustainable construction, and contributing to the global climate agenda. 

“Whether it's rethinking materials, restoring ecosystems, or redefining what concrete can be, our research is laying the foundation for a better, more sustainable world beneath the waves,” concludes Dr Maritz. 

News Archive

Boyden Observatory turns 120
2009-05-13

 

At the celebration of the 120th year of existence of the UFS's Boyden Observatory are, from the left: Prof. Herman van Schalkwyk, Dean: Faculty of Natural and Agricultural Sciences at the UFS, Prof. Driekie Hay, Vice-Rector: Academic Planning at the UFS, Mr Ian Heyns from AngloGold Ashanti and his wife, Cheryl, and Prof. François Retief, former rector of the UFS and patron of the Friends of Boyden.
Photo: Hannes Pieterse

The Boyden Observatory, one of the oldest observatories in the Southern Hemisphere and a prominent beacon in Bloemfontein, recently celebrated its 120th year of existence.

This milestone was celebrated by staff, students, other dignitaries of the University of the Free State (UFS) and special guests at the observatory last week.

“The observatory provides the Free State with a unique scientific, educational and tourist facility. No other city in South Africa, and few in the world, has a public observatory with telescopes the size and quality of those at Boyden,” said Prof. Herman van Schalkwyk, Dean of the Faculty of Natural and Agricultural Sciences at the UFS.

The observatory, boasting the third-largest optical telescope in South Africa, has a long and illustrious history. It was established on a temporary site on Mount Harvard near the small town of Chosica, Peru in 1889. Later it was moved to Arequipa in Peru where important astronomical observations were made from 1891 to 1926. “However, due to unstable weather patterns and observing conditions, it was decided to move the Boyden Station to another site somewhere else in the Southern Hemisphere, maybe South Africa,” said Prof. Van Schalkwyk.

South Africa's excellent climatic conditions were fairly well known and in 1927 the instruments were shipped and the Boyden Station was set up next to Maselspoort near Bloemfontein. Observations began in September 1927 and in 1933 the new site was officially completed, including the 60 inch (1.5 m) telescope, which was then the largest optical telescope in the Southern Hemisphere. This telescope was recently refurbished to a modern research instrument.

The observatory has various other telescopes and one of them, the 13" refractor telescope, which was sent to Arequipa in 1891 and later to Bloemfontein, is still in an excellent condition. Another important telescope is the Watcher Robotic Telescope of the University College Dublin, which conducts many successful observations of gamma ray bursts.

“In the first few decades of the twentieth century, the Boyden Observatory contributed considerably to our understanding of the secrets of the universe at large. The period luminosity relationship of the Cepheid variable stars was, for example, discovered from observations obtained at Boyden. This relationship is one of the cornerstones of modern astrophysics. It is currently used to make estimates of the size and age of the universe from observations of the Hubble Space Telescope,” said Prof. Van Schalkwyk.

“The Boyden Observatory contributed to the university’s astrophysics research group being able to produce the first M.Sc. degrees associated with the National Space Science Programme (NASSAP) in the country and the Boyden Science Centre plays an important role in science and technology awareness of learners, teachers and the general public,” said Prof. Van Schalkwyk.

The Boyden Science Centre has also formed strong relationships with various institutions, including the South African Agency for the Advancement of Science and Technology (SAASTA) and the Department of Science and Technology. The centre has already conducted many different projects for the Department of Science and Technology, including National Science Week projects, as well as National Astronomy Month projects. It also serves as one of the hosts of SAASTA’s annual Astronomy Quiz.

Media Release:
Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za
13 May 2009
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept