Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story University of the Free State | Photo Supplied
Dr Hossein Naghizadeh and Refilwe Lediga
Collaborative innovation in action: Researchers from the University of the Free State’s Green Concrete Lab have partnered with the University of Johannesburg to advance 3D printing technologies using sustainable concrete materials. Pictured (from left): Dr Hossein Naghizadeh, Senior Lecturer in Engineering Sciences at UFS, and Refilwe Lediga, Concrete Printing Research Expert in the Department of Civil Engineering Technology at UJ.

In an ambitious and interdisciplinary effort to address today’s Grand Challenges, researchers at the University of the Free State (UFS) are exploring how nature’s oldest life forms – stromatolites – can inspire cutting-edge innovations in industrial ecology and marine conservation.  Drawing from biomimicry, 3D printing, and microbial engineering, their work showcases the convergence of ecological insight with modern technology. 

“One such example is replicating the structures of stromatolites – some of the earliest evidence of life - using green cement and 3D printing, the latest technology in industrial ecology,” explains Dr Jacques Maritz, Head of the Unit of Engineering Sciences at UFS. 

 

Ancient structures, modern science  

Stromatolites are layered microbial formations created by ancient cyanobacteria and date back over 3.5 billion years. These living fossils, found in fossil records and rare modern environments like Shark Bay in Australia, grow through a combination of photosynthesis, sediment trapping, and calcium carbonate precipitation. Not only do they support biodiversity, but they also play a vital role in natural carbon sequestration. 

UFS researchers are harnessing the lessons from these ancient formations to address urgent environmental challenges. In particular, Dr Yolandi Schoeman, Senior Lecturer at the Centre for Biogeochemistry, is leading efforts to cultivate hybrid stromatolites in controlled environments, using microbial consortia grown on 3D-printed scaffolds.  

“At UFS, we are reimagining stromatolite formation through both artificial structural replication and biological cultivation, bridging industrial ecology and microbial engineering to address modern environmental challenges,” says Dr Schoeman. 

 

Ecological engineering for reef restoration 

The rapid decline of marine biodiversity and the degradation of natural reef ecosystems have prompted ecological engineers to develop innovative solutions. At the UFS Green Concrete Lab, researchers are pioneering the design of artificial reefs using 3D-printed, low-carbon geopolymer concrete – a material formulated from industrial by-products such as fly ash and slag. 

Artificial reefs mimic natural reef complexity and serve as critical habitats for marine life, from fish and crustaceans to coral polyps and algae. Algae, in particular, are key to marine ecosystems due to their roles in nutrient cycling, oxygen production, and carbon capture. 

“Green concrete refers to concrete that utilises alternative binders and industrial by-products, significantly reducing the environmental footprint. At UFS, we are focusing on geopolymer concrete, which eliminates the high-energy processes associated with Portland cement, while offering greater chemical resistance - ideal for marine applications,” explains Dr Abdolhossein Naghizadeh from the Unit of Engineering Sciences. 

 

3D printing nature’s complexity 

One of the challenges in artificial reef development is replicating biologically inspired geometries that support diverse marine ecosystems. Traditional construction methods often fail in this regard, but additive manufacturing, or 3D concrete printing, is providing a solution.  

The UFS Green Concrete Lab, in collaboration with the University of Johannesburg, is developing reef modules with intricate geometries and natural surface textures. These features support coral and algae attachment, accelerate ecological colonisation, and enhance habitat functionality. Biochar-based compost filters are also being integrated to aid algae-driven wastewater treatment. 

A particularly novel avenue of research involves using 3D printing to recreate stromatolite structures. These serve as ancient blueprints for modern reef design, merging deep-time ecological understanding with advanced material science. 

 

Biologically engineered hybrid stromatolites  

In parallel to structural efforts, UFS is advancing biological approaches to stromatolite cultivation. From July 2025, researchers in the Unit of Engineering Sciences will initiate a large-scale experiment using microbial consortia in 60-litre tanks, scaling up to 1 m² hypersaline ponds. 3D-printed conical scaffolds, coated with materials such as PP-CaCO₃, hydroxyapatite, and silica gel, will accelerate microbial colonisation and lamination. 

The goal: to achieve stromatolite growth of 14-16 mm in just 28 days - over 150 times faster than in nature. These hybrid systems are expected to produce 7-8 mg/L/day of oxygen, sequester carbon at 3.2 g/m²/day, and remove up to 90% of nitrates and phosphates from water. The potential applications extend from terrestrial ecosystem restoration to extraterrestrial life-support systems. 

 

A multidisciplinary vision for sustainability 

This work exemplifies the strength of interdisciplinary research at UFS, combining civil engineering, mechatronics, marine ecology, chemistry, microbiology, and digital fabrication. The Ecological Engineering Sciences stream fosters a vibrant environment for postgraduate students to develop practical, impactful solutions.  

The Green Concrete Lab is central to these efforts, offering students and researchers access to advanced technologies and collaborative networks. Through their innovative work in 3D-printed green concrete and microbial systems, UFS researchers are addressing biodiversity loss, advancing sustainable construction, and contributing to the global climate agenda. 

“Whether it's rethinking materials, restoring ecosystems, or redefining what concrete can be, our research is laying the foundation for a better, more sustainable world beneath the waves,” concludes Dr Maritz. 

News Archive

Lottery grant will boost public art at UFS
2009-05-25

 
 Public art at the UFS will get a major boost with money made available by the National Lottery Board. Here are Dr Ivan van Rooyen, Director: UFS Marketing, Ms Nontombi Ntakakaze (Artists in School Project) and Mr Ben Botma (Head of Department: Fine Arts) at one of the existing works of art by Edoardo Villa on the Bloemfontein Campus. 
Photo: Leatitia Pienaar.
Emerging and established artists will showcase their work in a comprehensive public sculpture project on the campuses of the University of the Free State (UFS). The aim is to create a greater understanding of cultural differences and promote the UFS vision of a truly multilingual, non-sexist, non-racial campus, says Dr Ivan van Rooyen, Director: UFS Marketing.

The National Lottery Board has approved a grant of R4,125 million in total for three major projects, one of which is the public sculpture project. The others are a Khoe-San Early Learning Centre pilot project in Heidedal, and a boost for the Artists in Schools project, which is already underway.

Dr Van Rooyen says one way of promoting the UFS vision is to create an alternative environment and provide visible, tangible symbols of change and transformation. This will enrich the educational and cultural experience of students and visitors to the campus by stimulating intercultural dialogue and providing a setting for historical dialogue between past and future.

The dream of the UFS is to inspire a sense of ownership of the campus of an open university, worthy of a democratic South Africa. “Therefore, a large-scale project of national significance has been conceptualised, where the development of infrastructure will involve the creation and acquisition of major South African art works for the long-term benefit of all South Africans,” Dr Van Rooyen says.

The public sculpture project will be implemented over the next few years. Artists will be commissioned as funds become available. The UFS will also consult extensively with local and national art museums with experience in the public art field. A wide spectrum of artists, especially artists from the black community, will be used.

Dr Van Rooyen says that many black artists have not had an opportunity to exhibit public sculptures because of prohibitive costs and the project will empower them to develop their skills. The project makes provision for both established and emerging artists to showcase their work.

The aim of the Khoe-San Early Learning Centre pilot project is to compile a curriculum that is sensitive to multiculturalism and multilingualism. The centre will be the first in the country and will respond to the need to promote and revitalise Khoe-San languages. Using arts and crafts and storytelling, as well as literacy, numeracy and life skills, children will learn to adapt to their environment and contribute to our diverse society. This centre will be a collaborative venture between the Heidedal community and the UFS.

Finally, the Artists in Schools project, which has been running successfully since 2004, will also receive a boost from the Lottery funding. Through a series of workshops that the Department of Fine Arts presents at schools, participants develop functional art products with a distinctive Free State character. These products are marketed and sold to benefit the artists, designers and craftspeople.

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt.stg@ufs.ac.za
25 May 2009
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept