Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story University of the Free State | Photo Supplied
Dr Hossein Naghizadeh and Refilwe Lediga
Collaborative innovation in action: Researchers from the University of the Free State’s Green Concrete Lab have partnered with the University of Johannesburg to advance 3D printing technologies using sustainable concrete materials. Pictured (from left): Dr Hossein Naghizadeh, Senior Lecturer in Engineering Sciences at UFS, and Refilwe Lediga, Concrete Printing Research Expert in the Department of Civil Engineering Technology at UJ.

In an ambitious and interdisciplinary effort to address today’s Grand Challenges, researchers at the University of the Free State (UFS) are exploring how nature’s oldest life forms – stromatolites – can inspire cutting-edge innovations in industrial ecology and marine conservation.  Drawing from biomimicry, 3D printing, and microbial engineering, their work showcases the convergence of ecological insight with modern technology. 

“One such example is replicating the structures of stromatolites – some of the earliest evidence of life - using green cement and 3D printing, the latest technology in industrial ecology,” explains Dr Jacques Maritz, Head of the Unit of Engineering Sciences at UFS. 

 

Ancient structures, modern science  

Stromatolites are layered microbial formations created by ancient cyanobacteria and date back over 3.5 billion years. These living fossils, found in fossil records and rare modern environments like Shark Bay in Australia, grow through a combination of photosynthesis, sediment trapping, and calcium carbonate precipitation. Not only do they support biodiversity, but they also play a vital role in natural carbon sequestration. 

UFS researchers are harnessing the lessons from these ancient formations to address urgent environmental challenges. In particular, Dr Yolandi Schoeman, Senior Lecturer at the Centre for Biogeochemistry, is leading efforts to cultivate hybrid stromatolites in controlled environments, using microbial consortia grown on 3D-printed scaffolds.  

“At UFS, we are reimagining stromatolite formation through both artificial structural replication and biological cultivation, bridging industrial ecology and microbial engineering to address modern environmental challenges,” says Dr Schoeman. 

 

Ecological engineering for reef restoration 

The rapid decline of marine biodiversity and the degradation of natural reef ecosystems have prompted ecological engineers to develop innovative solutions. At the UFS Green Concrete Lab, researchers are pioneering the design of artificial reefs using 3D-printed, low-carbon geopolymer concrete – a material formulated from industrial by-products such as fly ash and slag. 

Artificial reefs mimic natural reef complexity and serve as critical habitats for marine life, from fish and crustaceans to coral polyps and algae. Algae, in particular, are key to marine ecosystems due to their roles in nutrient cycling, oxygen production, and carbon capture. 

“Green concrete refers to concrete that utilises alternative binders and industrial by-products, significantly reducing the environmental footprint. At UFS, we are focusing on geopolymer concrete, which eliminates the high-energy processes associated with Portland cement, while offering greater chemical resistance - ideal for marine applications,” explains Dr Abdolhossein Naghizadeh from the Unit of Engineering Sciences. 

 

3D printing nature’s complexity 

One of the challenges in artificial reef development is replicating biologically inspired geometries that support diverse marine ecosystems. Traditional construction methods often fail in this regard, but additive manufacturing, or 3D concrete printing, is providing a solution.  

The UFS Green Concrete Lab, in collaboration with the University of Johannesburg, is developing reef modules with intricate geometries and natural surface textures. These features support coral and algae attachment, accelerate ecological colonisation, and enhance habitat functionality. Biochar-based compost filters are also being integrated to aid algae-driven wastewater treatment. 

A particularly novel avenue of research involves using 3D printing to recreate stromatolite structures. These serve as ancient blueprints for modern reef design, merging deep-time ecological understanding with advanced material science. 

 

Biologically engineered hybrid stromatolites  

In parallel to structural efforts, UFS is advancing biological approaches to stromatolite cultivation. From July 2025, researchers in the Unit of Engineering Sciences will initiate a large-scale experiment using microbial consortia in 60-litre tanks, scaling up to 1 m² hypersaline ponds. 3D-printed conical scaffolds, coated with materials such as PP-CaCO₃, hydroxyapatite, and silica gel, will accelerate microbial colonisation and lamination. 

The goal: to achieve stromatolite growth of 14-16 mm in just 28 days - over 150 times faster than in nature. These hybrid systems are expected to produce 7-8 mg/L/day of oxygen, sequester carbon at 3.2 g/m²/day, and remove up to 90% of nitrates and phosphates from water. The potential applications extend from terrestrial ecosystem restoration to extraterrestrial life-support systems. 

 

A multidisciplinary vision for sustainability 

This work exemplifies the strength of interdisciplinary research at UFS, combining civil engineering, mechatronics, marine ecology, chemistry, microbiology, and digital fabrication. The Ecological Engineering Sciences stream fosters a vibrant environment for postgraduate students to develop practical, impactful solutions.  

The Green Concrete Lab is central to these efforts, offering students and researchers access to advanced technologies and collaborative networks. Through their innovative work in 3D-printed green concrete and microbial systems, UFS researchers are addressing biodiversity loss, advancing sustainable construction, and contributing to the global climate agenda. 

“Whether it's rethinking materials, restoring ecosystems, or redefining what concrete can be, our research is laying the foundation for a better, more sustainable world beneath the waves,” concludes Dr Maritz. 

News Archive

UFS School of Nursing opens new frontiers at 40
2009-11-16

The opening of the virtual facility of the School of Nursing at the University of the Free State (UFS) and a gala dinner to celebrate the School’s 40th year of existence took place on the Main Campus in Bloemfontein this week. At the opening were, among others, from the left: Prof. Jonathan Jansen, Rector and Vice-Chancellor of the UFS; Dr Oluseyi Oyedele and Ms Viona Munjeri, both from The Atlantic Philanthropies; and Prof. Anita van der Merwe, Head of the School of Nursing at the UFS.
Photo: Leatitia Pienaar

All eyes in the nursing profession in South Africa were turned to the University of the Free State (UFS) when the School of Nursing opened a state-of-the-art virtual health training and learning facility and celebrated its 40th year of existence with a gala dinner on the Main Campus in Bloemfontein this week.

The lustrous events were attended by dignitaries from all spheres of the health-care fraternity in South Africa.

The new virtual facility, The Space, is made possible by a grant of R16 million from The Atlantic Philanthropies and R1 million from the UFS. The Atlantic Philanthropies organisation is an international philanthropic organisation that is going to inject R70 million into nursing in South African over the next four years. The initiative will enhance nursing education and step up the quality of health-care delivery in South Africa. Four major grants were made to universities in South Africa, of which the UFS is one.

With the facility at the UFS School of Nursing, nursing education is propelled into the future. Prof. Anita van der Merwe, Head of the School of Nursing, says, “The virtual learning facility is a very new way of thinking and teaching. At the moment, theory and practice are separated, as theory is often taught in the mornings, followed by practical settings later in the day. Learner nurses then also go to clinical facilities for their practicals where the quality of care is declining and human resources are a problem.

“We believe that with new technologies such as e-learning and high-tech computer-mediated equipment we can use the ‘virtual world’ to bridge the theory-practice gap in the same location.”

Prof. Van der Merwe says the project is essentially about transformation: taking a stand against stagnation in nursing education and practice and daring to be different.

In the new virtual facility nurses will have the best of three worlds – the expertise of the facilitator/educator, simulation technology, and a vast selection of on-line and off-line software, exposing them to blogs, broadcasting and enhancing computer literacy. This will attract both the new “millennial” generation, which tends to be technologically competent, as well as the older learner because of the unthreatening learning environment.

The core space will accommodate 40 to 60 students and is designed to encourage informal, collaborative learning and practice simultaneously. It will have a demarcated area for “patients” (such as advanced adult and baby patient simulators) and a “clinic space” allowing for role play.

At the gala dinner, Prof. Jonathan Jansen, Rector and Vice-Chancellor of the UFS commended nurses in South Africa for their caring role, but also expressed his concern that South African has lost its deep sense of care. South Africa is at a critical point and the country can be changed if a deep sense of care can be embedded again.

About forty nursing educators from all over South Africa attended an exploratory workshop in the facility today and the last meeting of the Forum of University Deans in South Africa (FUNDISA) also coincided with the festivities at the School of Nursing.

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za
13 November 2009
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept