Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story University of the Free State | Photo Supplied
Dr Hossein Naghizadeh and Refilwe Lediga
Collaborative innovation in action: Researchers from the University of the Free State’s Green Concrete Lab have partnered with the University of Johannesburg to advance 3D printing technologies using sustainable concrete materials. Pictured (from left): Dr Hossein Naghizadeh, Senior Lecturer in Engineering Sciences at UFS, and Refilwe Lediga, Concrete Printing Research Expert in the Department of Civil Engineering Technology at UJ.

In an ambitious and interdisciplinary effort to address today’s Grand Challenges, researchers at the University of the Free State (UFS) are exploring how nature’s oldest life forms – stromatolites – can inspire cutting-edge innovations in industrial ecology and marine conservation.  Drawing from biomimicry, 3D printing, and microbial engineering, their work showcases the convergence of ecological insight with modern technology. 

“One such example is replicating the structures of stromatolites – some of the earliest evidence of life - using green cement and 3D printing, the latest technology in industrial ecology,” explains Dr Jacques Maritz, Head of the Unit of Engineering Sciences at UFS. 

 

Ancient structures, modern science  

Stromatolites are layered microbial formations created by ancient cyanobacteria and date back over 3.5 billion years. These living fossils, found in fossil records and rare modern environments like Shark Bay in Australia, grow through a combination of photosynthesis, sediment trapping, and calcium carbonate precipitation. Not only do they support biodiversity, but they also play a vital role in natural carbon sequestration. 

UFS researchers are harnessing the lessons from these ancient formations to address urgent environmental challenges. In particular, Dr Yolandi Schoeman, Senior Lecturer at the Centre for Biogeochemistry, is leading efforts to cultivate hybrid stromatolites in controlled environments, using microbial consortia grown on 3D-printed scaffolds.  

“At UFS, we are reimagining stromatolite formation through both artificial structural replication and biological cultivation, bridging industrial ecology and microbial engineering to address modern environmental challenges,” says Dr Schoeman. 

 

Ecological engineering for reef restoration 

The rapid decline of marine biodiversity and the degradation of natural reef ecosystems have prompted ecological engineers to develop innovative solutions. At the UFS Green Concrete Lab, researchers are pioneering the design of artificial reefs using 3D-printed, low-carbon geopolymer concrete – a material formulated from industrial by-products such as fly ash and slag. 

Artificial reefs mimic natural reef complexity and serve as critical habitats for marine life, from fish and crustaceans to coral polyps and algae. Algae, in particular, are key to marine ecosystems due to their roles in nutrient cycling, oxygen production, and carbon capture. 

“Green concrete refers to concrete that utilises alternative binders and industrial by-products, significantly reducing the environmental footprint. At UFS, we are focusing on geopolymer concrete, which eliminates the high-energy processes associated with Portland cement, while offering greater chemical resistance - ideal for marine applications,” explains Dr Abdolhossein Naghizadeh from the Unit of Engineering Sciences. 

 

3D printing nature’s complexity 

One of the challenges in artificial reef development is replicating biologically inspired geometries that support diverse marine ecosystems. Traditional construction methods often fail in this regard, but additive manufacturing, or 3D concrete printing, is providing a solution.  

The UFS Green Concrete Lab, in collaboration with the University of Johannesburg, is developing reef modules with intricate geometries and natural surface textures. These features support coral and algae attachment, accelerate ecological colonisation, and enhance habitat functionality. Biochar-based compost filters are also being integrated to aid algae-driven wastewater treatment. 

A particularly novel avenue of research involves using 3D printing to recreate stromatolite structures. These serve as ancient blueprints for modern reef design, merging deep-time ecological understanding with advanced material science. 

 

Biologically engineered hybrid stromatolites  

In parallel to structural efforts, UFS is advancing biological approaches to stromatolite cultivation. From July 2025, researchers in the Unit of Engineering Sciences will initiate a large-scale experiment using microbial consortia in 60-litre tanks, scaling up to 1 m² hypersaline ponds. 3D-printed conical scaffolds, coated with materials such as PP-CaCO₃, hydroxyapatite, and silica gel, will accelerate microbial colonisation and lamination. 

The goal: to achieve stromatolite growth of 14-16 mm in just 28 days - over 150 times faster than in nature. These hybrid systems are expected to produce 7-8 mg/L/day of oxygen, sequester carbon at 3.2 g/m²/day, and remove up to 90% of nitrates and phosphates from water. The potential applications extend from terrestrial ecosystem restoration to extraterrestrial life-support systems. 

 

A multidisciplinary vision for sustainability 

This work exemplifies the strength of interdisciplinary research at UFS, combining civil engineering, mechatronics, marine ecology, chemistry, microbiology, and digital fabrication. The Ecological Engineering Sciences stream fosters a vibrant environment for postgraduate students to develop practical, impactful solutions.  

The Green Concrete Lab is central to these efforts, offering students and researchers access to advanced technologies and collaborative networks. Through their innovative work in 3D-printed green concrete and microbial systems, UFS researchers are addressing biodiversity loss, advancing sustainable construction, and contributing to the global climate agenda. 

“Whether it's rethinking materials, restoring ecosystems, or redefining what concrete can be, our research is laying the foundation for a better, more sustainable world beneath the waves,” concludes Dr Maritz. 

News Archive

UFS Council elects a new Chairperson
2009-11-22

Judge Ian van der Merwe

The Council of the University of the Free State (UFS) elected Judge Ian van der Merwe as its new Chairperson at its last meeting for this year on Friday, 20 November 2009.

Judge Van der Merwe is an alumnus of the UFS and has been a member of the Council since 9 March 2007. In accepting his appointment, Judge Van der Merwe said that he was honoured and humbled to lead a Council of this calibre. “I will always do what is in the best interest of the UFS and, together with the Council, I will work towards making it an autonomous institution of academic excellence that is non-racial, non-sexist, and where diversity is cherished,” he said.

The election of a new Chairperson and the term of the Chancellor were among the matters discussed during yesterday’s meeting.

Dr Franklin Sonn will retire as Chancellor on 31 December 2009 and the term of office of the current Chairperson of Council, Judge Faan Hancke, will also expire on 31 December 2009. Dr Sonn has been Chancellor since 7 February 2003 and Judge Hancke has been Chairperson of the Council since 1 June 2001.

“I am elated that someone of Judge Van der Merwe’s stature has been elected as Chairperson and will provide him with my full support,” said Prof. Jonathan Jansen, Rector and Vice-Chancellor.

The Council paid tribute to Judge Hancke for the time he dedicated to the UFS, as well as for his leadership, guidance and wisdom to take the institution to where it stands in the current phase of its history. The Council also recognised Judge Hancke for, amongst others, his decision to appoint Prof. Jansen as the first black Rector and Vice-Chancellor, for his role in the implementation of the Transformation Plan and the policy to increase diversity in residences at the UFS, as well as his contribution to the growth of black students.

Judge Hancke thanked the Council for their support and assistance during his term and congratulated Judge van der Merwe on his appointment. “I wish Prof. Jansen and his management team well and hope that they will have the wisdom to solve the problems the institution is facing so that they can focus on the core business of the UFS namely its academia. I know the University can make a tremendous contribution to the country,” he said.

The Council also welcomed the following new members who were present at the meeting: Mr Pule Makgoe, MEC for Education in the Free State; Mr Ndaba Ntsele, Chief Executive Officer of the Pamodzi Group and Mr Willem Louw, Managing Director of Sasol Technology.

The new Chancellor will be elected as soon as the proposed statute is approved by the Council in 2010 and published in the Government Gazette. Prof. Jansen will act as Chancellor for the interim period from 1 January 2010.

Media release
Issued by: Lacea Loader
Deputy Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
21 November 2009
 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept