Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story University of the Free State | Photo Supplied
Dr Hossein Naghizadeh and Refilwe Lediga
Collaborative innovation in action: Researchers from the University of the Free State’s Green Concrete Lab have partnered with the University of Johannesburg to advance 3D printing technologies using sustainable concrete materials. Pictured (from left): Dr Hossein Naghizadeh, Senior Lecturer in Engineering Sciences at UFS, and Refilwe Lediga, Concrete Printing Research Expert in the Department of Civil Engineering Technology at UJ.

In an ambitious and interdisciplinary effort to address today’s Grand Challenges, researchers at the University of the Free State (UFS) are exploring how nature’s oldest life forms – stromatolites – can inspire cutting-edge innovations in industrial ecology and marine conservation.  Drawing from biomimicry, 3D printing, and microbial engineering, their work showcases the convergence of ecological insight with modern technology. 

“One such example is replicating the structures of stromatolites – some of the earliest evidence of life - using green cement and 3D printing, the latest technology in industrial ecology,” explains Dr Jacques Maritz, Head of the Unit of Engineering Sciences at UFS. 

 

Ancient structures, modern science  

Stromatolites are layered microbial formations created by ancient cyanobacteria and date back over 3.5 billion years. These living fossils, found in fossil records and rare modern environments like Shark Bay in Australia, grow through a combination of photosynthesis, sediment trapping, and calcium carbonate precipitation. Not only do they support biodiversity, but they also play a vital role in natural carbon sequestration. 

UFS researchers are harnessing the lessons from these ancient formations to address urgent environmental challenges. In particular, Dr Yolandi Schoeman, Senior Lecturer at the Centre for Biogeochemistry, is leading efforts to cultivate hybrid stromatolites in controlled environments, using microbial consortia grown on 3D-printed scaffolds.  

“At UFS, we are reimagining stromatolite formation through both artificial structural replication and biological cultivation, bridging industrial ecology and microbial engineering to address modern environmental challenges,” says Dr Schoeman. 

 

Ecological engineering for reef restoration 

The rapid decline of marine biodiversity and the degradation of natural reef ecosystems have prompted ecological engineers to develop innovative solutions. At the UFS Green Concrete Lab, researchers are pioneering the design of artificial reefs using 3D-printed, low-carbon geopolymer concrete – a material formulated from industrial by-products such as fly ash and slag. 

Artificial reefs mimic natural reef complexity and serve as critical habitats for marine life, from fish and crustaceans to coral polyps and algae. Algae, in particular, are key to marine ecosystems due to their roles in nutrient cycling, oxygen production, and carbon capture. 

“Green concrete refers to concrete that utilises alternative binders and industrial by-products, significantly reducing the environmental footprint. At UFS, we are focusing on geopolymer concrete, which eliminates the high-energy processes associated with Portland cement, while offering greater chemical resistance - ideal for marine applications,” explains Dr Abdolhossein Naghizadeh from the Unit of Engineering Sciences. 

 

3D printing nature’s complexity 

One of the challenges in artificial reef development is replicating biologically inspired geometries that support diverse marine ecosystems. Traditional construction methods often fail in this regard, but additive manufacturing, or 3D concrete printing, is providing a solution.  

The UFS Green Concrete Lab, in collaboration with the University of Johannesburg, is developing reef modules with intricate geometries and natural surface textures. These features support coral and algae attachment, accelerate ecological colonisation, and enhance habitat functionality. Biochar-based compost filters are also being integrated to aid algae-driven wastewater treatment. 

A particularly novel avenue of research involves using 3D printing to recreate stromatolite structures. These serve as ancient blueprints for modern reef design, merging deep-time ecological understanding with advanced material science. 

 

Biologically engineered hybrid stromatolites  

In parallel to structural efforts, UFS is advancing biological approaches to stromatolite cultivation. From July 2025, researchers in the Unit of Engineering Sciences will initiate a large-scale experiment using microbial consortia in 60-litre tanks, scaling up to 1 m² hypersaline ponds. 3D-printed conical scaffolds, coated with materials such as PP-CaCO₃, hydroxyapatite, and silica gel, will accelerate microbial colonisation and lamination. 

The goal: to achieve stromatolite growth of 14-16 mm in just 28 days - over 150 times faster than in nature. These hybrid systems are expected to produce 7-8 mg/L/day of oxygen, sequester carbon at 3.2 g/m²/day, and remove up to 90% of nitrates and phosphates from water. The potential applications extend from terrestrial ecosystem restoration to extraterrestrial life-support systems. 

 

A multidisciplinary vision for sustainability 

This work exemplifies the strength of interdisciplinary research at UFS, combining civil engineering, mechatronics, marine ecology, chemistry, microbiology, and digital fabrication. The Ecological Engineering Sciences stream fosters a vibrant environment for postgraduate students to develop practical, impactful solutions.  

The Green Concrete Lab is central to these efforts, offering students and researchers access to advanced technologies and collaborative networks. Through their innovative work in 3D-printed green concrete and microbial systems, UFS researchers are addressing biodiversity loss, advancing sustainable construction, and contributing to the global climate agenda. 

“Whether it's rethinking materials, restoring ecosystems, or redefining what concrete can be, our research is laying the foundation for a better, more sustainable world beneath the waves,” concludes Dr Maritz. 

News Archive

2010 World Cup: An opportunity for nation-building
2010-05-11

Pictured from the left, front are: Prof. Labuschagne and Prof. Cornelissen. Back: Prof. Kersting, Prof. Teuns Verschoor (Acting Senior Vice-Rector: UFS) and Dr Ralf Hermann (DAAD).
Photo: Mangaliso Radebe

“The 2010 FIFA World Cup creates a window of opportunity for nation-building in South Africa that could even surpass the opportunity created by the 1995 Rugby World Cup.”

This was according to Prof. Pieter Labuschagne from the University of South Africa, who was one of the three speakers during the lecture series on soccer that were recently presented by the Faculty of the Humanities at the University of the Free State (UFS), in conjunction with the German Academic Exchange Service (DAAD), under the theme: Soccer and Nation Building.

Prof. Labuschagne delivered a paper on the topic, The 2010 Soccer World Cup in South Africa: Nation Building or White Apathy?, highlighting the critical issue of how sport in South Africa was still largely supported along racial lines.

“We are still enforcing the separateness of rugby as a sport for whites and soccer as a sport for blacks,” he said.

He said a high degree of animosity against soccer existed among whites because they felt rugby and cricket were being singled out by parliament as far as transformation was concerned. He said that could be the reason why a large number of South African whites still supported soccer teams from foreign countries instead of local Premier Soccer League teams.

“Bridging social context between different racial groups is still a major problem, even though patriotism is comparatively high in South Africa,” added Prof. Norbert Kersting from the University of Stellenbosch, who also presented a paper on World Cup 2010 and nation building from Germany to South Africa, drawing critical comparisons on issues of national pride and identity between the 2006 World Cup in Germany and the 2010 World Cup.

“Strong leadership is needed to utilize the opportunity provided by the 2010 World Cup to build national unity as former President Nelson Mandela did with the Rugby World Cup in 1995,” said Prof. Labuschagne.

Although acknowledging the power of sport as a unifying force, Prof. Scarlett Cornelissen, also from the University of Stellenbosch, said that, since 1995, the captivating power of sport had been used to achieve political aims and that the 2010 World Cup was no different.

Amongst the reasons she advanced for her argument were that the 2010 World Cup was meant to show the world that South Africa was a capable country; that the World Cup was meant to solidify South Africa’s “African Agenda” – the African Renaissance - and also to extend the idea of the Rainbow Nation; consolidate democracy; contribute to socio-economic development and legitimize the state.

“We should not place too much emphasis on the 2010 World Cup as a nation-building instrument,” she concluded.

She presented a paper on the topic Transforming the Nation? The political legacies of the 2010 FIFA World Cup.

The aim of the lecture series was to inspire public debate on the social and cultural dimensions of soccer.

DAAD (Deutscher Akademischer Austausch Dienst) is one of the world’s largest and most respected intermediary organisations in the field of international academic cooperation.
Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
11 May 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept