Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story University of the Free State | Photo Supplied
Dr Hossein Naghizadeh and Refilwe Lediga
Collaborative innovation in action: Researchers from the University of the Free State’s Green Concrete Lab have partnered with the University of Johannesburg to advance 3D printing technologies using sustainable concrete materials. Pictured (from left): Dr Hossein Naghizadeh, Senior Lecturer in Engineering Sciences at UFS, and Refilwe Lediga, Concrete Printing Research Expert in the Department of Civil Engineering Technology at UJ.

In an ambitious and interdisciplinary effort to address today’s Grand Challenges, researchers at the University of the Free State (UFS) are exploring how nature’s oldest life forms – stromatolites – can inspire cutting-edge innovations in industrial ecology and marine conservation.  Drawing from biomimicry, 3D printing, and microbial engineering, their work showcases the convergence of ecological insight with modern technology. 

“One such example is replicating the structures of stromatolites – some of the earliest evidence of life - using green cement and 3D printing, the latest technology in industrial ecology,” explains Dr Jacques Maritz, Head of the Unit of Engineering Sciences at UFS. 

 

Ancient structures, modern science  

Stromatolites are layered microbial formations created by ancient cyanobacteria and date back over 3.5 billion years. These living fossils, found in fossil records and rare modern environments like Shark Bay in Australia, grow through a combination of photosynthesis, sediment trapping, and calcium carbonate precipitation. Not only do they support biodiversity, but they also play a vital role in natural carbon sequestration. 

UFS researchers are harnessing the lessons from these ancient formations to address urgent environmental challenges. In particular, Dr Yolandi Schoeman, Senior Lecturer at the Centre for Biogeochemistry, is leading efforts to cultivate hybrid stromatolites in controlled environments, using microbial consortia grown on 3D-printed scaffolds.  

“At UFS, we are reimagining stromatolite formation through both artificial structural replication and biological cultivation, bridging industrial ecology and microbial engineering to address modern environmental challenges,” says Dr Schoeman. 

 

Ecological engineering for reef restoration 

The rapid decline of marine biodiversity and the degradation of natural reef ecosystems have prompted ecological engineers to develop innovative solutions. At the UFS Green Concrete Lab, researchers are pioneering the design of artificial reefs using 3D-printed, low-carbon geopolymer concrete – a material formulated from industrial by-products such as fly ash and slag. 

Artificial reefs mimic natural reef complexity and serve as critical habitats for marine life, from fish and crustaceans to coral polyps and algae. Algae, in particular, are key to marine ecosystems due to their roles in nutrient cycling, oxygen production, and carbon capture. 

“Green concrete refers to concrete that utilises alternative binders and industrial by-products, significantly reducing the environmental footprint. At UFS, we are focusing on geopolymer concrete, which eliminates the high-energy processes associated with Portland cement, while offering greater chemical resistance - ideal for marine applications,” explains Dr Abdolhossein Naghizadeh from the Unit of Engineering Sciences. 

 

3D printing nature’s complexity 

One of the challenges in artificial reef development is replicating biologically inspired geometries that support diverse marine ecosystems. Traditional construction methods often fail in this regard, but additive manufacturing, or 3D concrete printing, is providing a solution.  

The UFS Green Concrete Lab, in collaboration with the University of Johannesburg, is developing reef modules with intricate geometries and natural surface textures. These features support coral and algae attachment, accelerate ecological colonisation, and enhance habitat functionality. Biochar-based compost filters are also being integrated to aid algae-driven wastewater treatment. 

A particularly novel avenue of research involves using 3D printing to recreate stromatolite structures. These serve as ancient blueprints for modern reef design, merging deep-time ecological understanding with advanced material science. 

 

Biologically engineered hybrid stromatolites  

In parallel to structural efforts, UFS is advancing biological approaches to stromatolite cultivation. From July 2025, researchers in the Unit of Engineering Sciences will initiate a large-scale experiment using microbial consortia in 60-litre tanks, scaling up to 1 m² hypersaline ponds. 3D-printed conical scaffolds, coated with materials such as PP-CaCO₃, hydroxyapatite, and silica gel, will accelerate microbial colonisation and lamination. 

The goal: to achieve stromatolite growth of 14-16 mm in just 28 days - over 150 times faster than in nature. These hybrid systems are expected to produce 7-8 mg/L/day of oxygen, sequester carbon at 3.2 g/m²/day, and remove up to 90% of nitrates and phosphates from water. The potential applications extend from terrestrial ecosystem restoration to extraterrestrial life-support systems. 

 

A multidisciplinary vision for sustainability 

This work exemplifies the strength of interdisciplinary research at UFS, combining civil engineering, mechatronics, marine ecology, chemistry, microbiology, and digital fabrication. The Ecological Engineering Sciences stream fosters a vibrant environment for postgraduate students to develop practical, impactful solutions.  

The Green Concrete Lab is central to these efforts, offering students and researchers access to advanced technologies and collaborative networks. Through their innovative work in 3D-printed green concrete and microbial systems, UFS researchers are addressing biodiversity loss, advancing sustainable construction, and contributing to the global climate agenda. 

“Whether it's rethinking materials, restoring ecosystems, or redefining what concrete can be, our research is laying the foundation for a better, more sustainable world beneath the waves,” concludes Dr Maritz. 

News Archive

Heinrich Brüssow named as Kovsie Alumnus of the Year
2010-08-19

Ms Jackie Ntshingila  Prof. Teuns Verschoor  Prof. Benito Khotseng  Heinrich Brüssow 

The Alumni of the University of the Free State (UFS) have named Heinrich Brüssow as the Kovsie Alumnus of the Year for 2009.

At the same time, Ms Jackie Ntshingila, the Provincial Manager of the Small Enterprise Development Agency (SEDA), will receive the Kovsie Alumni Cum Laude Award, while the Executive Management Award will be awarded to Prof. Teuns Verschoor, acting Senior Vice-Rector at the UFS, and Prof. Benito Khotseng. These awards, which are made annually to honour alumni of the UFS for their exceptional achievements and contributions to the university, will be awarded on Friday, 3 September 2010.

Heinrich is currently one of the most formidable Free State Cheetahs players. During the international Super 14 Competition he was a pillar of strength for his team in many respects. He was one of the outstanding players in the match between the Springboks and the Lions. He has established himself in the triumphant Springbok team as one of the definite choices. He received the Man-of-the-Match award in the Springboks’ victory over the All Blacks on 25 July 2009, as well as the awards as the Provincial Player of the Castle SA 2009 Tournament, the SA Rugby Young Player of the Year 2009 and the 2009 Sports24 Performer of the Month.

Ms Ntshingila will receive the Kovsie Alumni Cum Laude Award for her role in the business development sector in the Free State and particularly the empowerment of women in the business sector. Her constructive inputs on various committees have lead to the outstanding role that she has played to expand SEDA in the Free State from 1 to 56 members and five branches during a relatively short period.

Prof. Verschoor will receive an Executive Management Award for the tremendous role he has played in many student matters, research, transformation and other university matters. Recognition is also given to the role that he fulfilled as acting Rector of the university during 2008-2009. In this he has emphasised his passion and commitment towards the university. In 2004 he received a Centenary Medal for management, diversity and student transformation.

Prof. Khotseng will receive an Executive Management Award for his influential and leading role during the 1990s, when the UFS was established as an outstanding institution. Prof. Khotseng played a leading and influential role as Vice-Rector: Student Affairs. He has served on the UFS Council from 1993 and in 1994 he accepted the position as Senior Manager: Strategic Programmes at Kovsies. He managed transformation and the marketing of the university in the black community with distinction. In 1995 he helped to diffuse the conflict in residences and to create a culture of learning. With the help of the Multicultural and Transformation Committees he taught persons to respect and understand one another. In 2004 he also received a Centenary Medal. 

The coveted Kovsie Alumni Awards will be handed over at a Kovsie Alumni breakfast. All alumni are welcome at the breakfast which will take place in the Reitz Hall of the UFS Centenary Complex. The cost is R50 per person and includes a delicious breakfast. If you are interested in attending, please contact Annanda Calitz at 051 401 3382 or ficka@ufs.ac.za  
 
Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za
19 August 2010

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept