Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story University of the Free State | Photo Supplied
Dr Hossein Naghizadeh and Refilwe Lediga
Collaborative innovation in action: Researchers from the University of the Free State’s Green Concrete Lab have partnered with the University of Johannesburg to advance 3D printing technologies using sustainable concrete materials. Pictured (from left): Dr Hossein Naghizadeh, Senior Lecturer in Engineering Sciences at UFS, and Refilwe Lediga, Concrete Printing Research Expert in the Department of Civil Engineering Technology at UJ.

In an ambitious and interdisciplinary effort to address today’s Grand Challenges, researchers at the University of the Free State (UFS) are exploring how nature’s oldest life forms – stromatolites – can inspire cutting-edge innovations in industrial ecology and marine conservation.  Drawing from biomimicry, 3D printing, and microbial engineering, their work showcases the convergence of ecological insight with modern technology. 

“One such example is replicating the structures of stromatolites – some of the earliest evidence of life - using green cement and 3D printing, the latest technology in industrial ecology,” explains Dr Jacques Maritz, Head of the Unit of Engineering Sciences at UFS. 

 

Ancient structures, modern science  

Stromatolites are layered microbial formations created by ancient cyanobacteria and date back over 3.5 billion years. These living fossils, found in fossil records and rare modern environments like Shark Bay in Australia, grow through a combination of photosynthesis, sediment trapping, and calcium carbonate precipitation. Not only do they support biodiversity, but they also play a vital role in natural carbon sequestration. 

UFS researchers are harnessing the lessons from these ancient formations to address urgent environmental challenges. In particular, Dr Yolandi Schoeman, Senior Lecturer at the Centre for Biogeochemistry, is leading efforts to cultivate hybrid stromatolites in controlled environments, using microbial consortia grown on 3D-printed scaffolds.  

“At UFS, we are reimagining stromatolite formation through both artificial structural replication and biological cultivation, bridging industrial ecology and microbial engineering to address modern environmental challenges,” says Dr Schoeman. 

 

Ecological engineering for reef restoration 

The rapid decline of marine biodiversity and the degradation of natural reef ecosystems have prompted ecological engineers to develop innovative solutions. At the UFS Green Concrete Lab, researchers are pioneering the design of artificial reefs using 3D-printed, low-carbon geopolymer concrete – a material formulated from industrial by-products such as fly ash and slag. 

Artificial reefs mimic natural reef complexity and serve as critical habitats for marine life, from fish and crustaceans to coral polyps and algae. Algae, in particular, are key to marine ecosystems due to their roles in nutrient cycling, oxygen production, and carbon capture. 

“Green concrete refers to concrete that utilises alternative binders and industrial by-products, significantly reducing the environmental footprint. At UFS, we are focusing on geopolymer concrete, which eliminates the high-energy processes associated with Portland cement, while offering greater chemical resistance - ideal for marine applications,” explains Dr Abdolhossein Naghizadeh from the Unit of Engineering Sciences. 

 

3D printing nature’s complexity 

One of the challenges in artificial reef development is replicating biologically inspired geometries that support diverse marine ecosystems. Traditional construction methods often fail in this regard, but additive manufacturing, or 3D concrete printing, is providing a solution.  

The UFS Green Concrete Lab, in collaboration with the University of Johannesburg, is developing reef modules with intricate geometries and natural surface textures. These features support coral and algae attachment, accelerate ecological colonisation, and enhance habitat functionality. Biochar-based compost filters are also being integrated to aid algae-driven wastewater treatment. 

A particularly novel avenue of research involves using 3D printing to recreate stromatolite structures. These serve as ancient blueprints for modern reef design, merging deep-time ecological understanding with advanced material science. 

 

Biologically engineered hybrid stromatolites  

In parallel to structural efforts, UFS is advancing biological approaches to stromatolite cultivation. From July 2025, researchers in the Unit of Engineering Sciences will initiate a large-scale experiment using microbial consortia in 60-litre tanks, scaling up to 1 m² hypersaline ponds. 3D-printed conical scaffolds, coated with materials such as PP-CaCO₃, hydroxyapatite, and silica gel, will accelerate microbial colonisation and lamination. 

The goal: to achieve stromatolite growth of 14-16 mm in just 28 days - over 150 times faster than in nature. These hybrid systems are expected to produce 7-8 mg/L/day of oxygen, sequester carbon at 3.2 g/m²/day, and remove up to 90% of nitrates and phosphates from water. The potential applications extend from terrestrial ecosystem restoration to extraterrestrial life-support systems. 

 

A multidisciplinary vision for sustainability 

This work exemplifies the strength of interdisciplinary research at UFS, combining civil engineering, mechatronics, marine ecology, chemistry, microbiology, and digital fabrication. The Ecological Engineering Sciences stream fosters a vibrant environment for postgraduate students to develop practical, impactful solutions.  

The Green Concrete Lab is central to these efforts, offering students and researchers access to advanced technologies and collaborative networks. Through their innovative work in 3D-printed green concrete and microbial systems, UFS researchers are addressing biodiversity loss, advancing sustainable construction, and contributing to the global climate agenda. 

“Whether it's rethinking materials, restoring ecosystems, or redefining what concrete can be, our research is laying the foundation for a better, more sustainable world beneath the waves,” concludes Dr Maritz. 

News Archive

Unique programme for next generation of professors launched
2010-11-19

Some of the scholars taking part in the Vice-Chancellor's Prestige Young Scholars Programme are, from the left: Dr Andréhette Verster, Ms Liezel Kotzé and Dr Nthabeleng Rammile.
Photo: Stephen Collett

The University of the Free State (UFS) has launched a programme that will provide an accelerated pathway to 25 young scholars with recent PhDs and teach them how to become professors through intensive local and international mentorship, research support and academic training.

The Vice-Chancellor’s Prestige Programme for Young Scholars focuses on the next generation of top researchers in South Africa who will fill the gap left by retiring academics. It will also add significantly to the diversity of the professoriate at the UFS.

No other university in the country has a programme of such scale and intensity for building excellence and diversity through young scholars.

“The programme is highly selective and limited to the most promising young scholars at the university. It will also contribute towards establishing an international reputation for the university and positioning the UFS as one of the best research institutions in the country,” said Prof. Neil Roos, Director of the Postgraduate School at the UFS. He will manage the programme together with Prof. Jackie du Toit, also from the university.

Running for the next three years, the programme will put the 25 scholars through an intensive programme of academic and scholarship support which includes advanced theoretical and methodological training and exposure to leading international scholars in their fields. They will also be exposed to intensive reading and writing programmes, high-level seminar and conference participation and presentation, accelerated publication schedules and personal mentoring and advising plans.

“Scholarship will only grow if there is a critical mass – and this is what we want to achieve at the UFS. We want to create a pool of young scholars, develop and connect them with international scholars and place them at top universities in the world where they can be mentored by the best in their respective fields,” said Prof. Jonathan Jansen, Vice-Chancellor and Rector of the UFS at the launch of the programme.

According to Prof. Jansen, the UFS aims to draw public intellectuals and A-rated scientists to the campus and make academic work attractive to academics at the university and countrywide.

The group of scholars has a good academic record, with 69% of them completing their PhDs within the last five years. The group is well represented in terms of race and gender; the majority are in the 26 to 30-year age group and specialisations include the social sciences (including education, the humanities and arts) as well as the natural sciences.

“Scholarship develops over time. We are proud and extremely honoured to be selected for this prestigious programme. With this scholarship we acknowledge the responsibility of building the UFS and of extending our knowledge across disciplines. We will establish a scholarly advancement for our university that will enable it to compete with the best in the world,” said Dr Nalize Marais, one of the prestige scholars.

The launch was also attended by members of the university’s International Advisory Council (IAC). This council, which visited the university the past week to advise the leadership on its future positioning strategies, especially in relation to its international aspiration to become a place of scholarship and service among the leading universities in the world, congratulated the UFS on this groundbreaking programme.

“You are lucky to have a leadership that dares to dream and that can act the dream. You are fortunate that your leadership wants to take this university forward and explore new horizons,” said Prof. Aki Saweyrr, former Secretary-General of the Association of African Universities in Ghana and member of the IAC.

Ending the evening’s programme was Dr Gansen Pillay, Vice-President of the National Research Foundation. Prof. Gansen also congratulated the UFS on its visionary and inspirational leadership. “It is a privilege to make a life-changing contribution to research in the world. Universities must take ownership of their own development – which is exactly what the UFS is doing. And, although this is a truly South African programme, it could have an impact on the rest of the world,” he said.
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept