Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story University of the Free State | Photo Supplied
Dr Hossein Naghizadeh and Refilwe Lediga
Collaborative innovation in action: Researchers from the University of the Free State’s Green Concrete Lab have partnered with the University of Johannesburg to advance 3D printing technologies using sustainable concrete materials. Pictured (from left): Dr Hossein Naghizadeh, Senior Lecturer in Engineering Sciences at UFS, and Refilwe Lediga, Concrete Printing Research Expert in the Department of Civil Engineering Technology at UJ.

In an ambitious and interdisciplinary effort to address today’s Grand Challenges, researchers at the University of the Free State (UFS) are exploring how nature’s oldest life forms – stromatolites – can inspire cutting-edge innovations in industrial ecology and marine conservation.  Drawing from biomimicry, 3D printing, and microbial engineering, their work showcases the convergence of ecological insight with modern technology. 

“One such example is replicating the structures of stromatolites – some of the earliest evidence of life - using green cement and 3D printing, the latest technology in industrial ecology,” explains Dr Jacques Maritz, Head of the Unit of Engineering Sciences at UFS. 

 

Ancient structures, modern science  

Stromatolites are layered microbial formations created by ancient cyanobacteria and date back over 3.5 billion years. These living fossils, found in fossil records and rare modern environments like Shark Bay in Australia, grow through a combination of photosynthesis, sediment trapping, and calcium carbonate precipitation. Not only do they support biodiversity, but they also play a vital role in natural carbon sequestration. 

UFS researchers are harnessing the lessons from these ancient formations to address urgent environmental challenges. In particular, Dr Yolandi Schoeman, Senior Lecturer at the Centre for Biogeochemistry, is leading efforts to cultivate hybrid stromatolites in controlled environments, using microbial consortia grown on 3D-printed scaffolds.  

“At UFS, we are reimagining stromatolite formation through both artificial structural replication and biological cultivation, bridging industrial ecology and microbial engineering to address modern environmental challenges,” says Dr Schoeman. 

 

Ecological engineering for reef restoration 

The rapid decline of marine biodiversity and the degradation of natural reef ecosystems have prompted ecological engineers to develop innovative solutions. At the UFS Green Concrete Lab, researchers are pioneering the design of artificial reefs using 3D-printed, low-carbon geopolymer concrete – a material formulated from industrial by-products such as fly ash and slag. 

Artificial reefs mimic natural reef complexity and serve as critical habitats for marine life, from fish and crustaceans to coral polyps and algae. Algae, in particular, are key to marine ecosystems due to their roles in nutrient cycling, oxygen production, and carbon capture. 

“Green concrete refers to concrete that utilises alternative binders and industrial by-products, significantly reducing the environmental footprint. At UFS, we are focusing on geopolymer concrete, which eliminates the high-energy processes associated with Portland cement, while offering greater chemical resistance - ideal for marine applications,” explains Dr Abdolhossein Naghizadeh from the Unit of Engineering Sciences. 

 

3D printing nature’s complexity 

One of the challenges in artificial reef development is replicating biologically inspired geometries that support diverse marine ecosystems. Traditional construction methods often fail in this regard, but additive manufacturing, or 3D concrete printing, is providing a solution.  

The UFS Green Concrete Lab, in collaboration with the University of Johannesburg, is developing reef modules with intricate geometries and natural surface textures. These features support coral and algae attachment, accelerate ecological colonisation, and enhance habitat functionality. Biochar-based compost filters are also being integrated to aid algae-driven wastewater treatment. 

A particularly novel avenue of research involves using 3D printing to recreate stromatolite structures. These serve as ancient blueprints for modern reef design, merging deep-time ecological understanding with advanced material science. 

 

Biologically engineered hybrid stromatolites  

In parallel to structural efforts, UFS is advancing biological approaches to stromatolite cultivation. From July 2025, researchers in the Unit of Engineering Sciences will initiate a large-scale experiment using microbial consortia in 60-litre tanks, scaling up to 1 m² hypersaline ponds. 3D-printed conical scaffolds, coated with materials such as PP-CaCO₃, hydroxyapatite, and silica gel, will accelerate microbial colonisation and lamination. 

The goal: to achieve stromatolite growth of 14-16 mm in just 28 days - over 150 times faster than in nature. These hybrid systems are expected to produce 7-8 mg/L/day of oxygen, sequester carbon at 3.2 g/m²/day, and remove up to 90% of nitrates and phosphates from water. The potential applications extend from terrestrial ecosystem restoration to extraterrestrial life-support systems. 

 

A multidisciplinary vision for sustainability 

This work exemplifies the strength of interdisciplinary research at UFS, combining civil engineering, mechatronics, marine ecology, chemistry, microbiology, and digital fabrication. The Ecological Engineering Sciences stream fosters a vibrant environment for postgraduate students to develop practical, impactful solutions.  

The Green Concrete Lab is central to these efforts, offering students and researchers access to advanced technologies and collaborative networks. Through their innovative work in 3D-printed green concrete and microbial systems, UFS researchers are addressing biodiversity loss, advancing sustainable construction, and contributing to the global climate agenda. 

“Whether it's rethinking materials, restoring ecosystems, or redefining what concrete can be, our research is laying the foundation for a better, more sustainable world beneath the waves,” concludes Dr Maritz. 

News Archive

Dr Khotso Mokhele joins ranks of distinguished Chancellors
2010-11-21

Attending the inauguration ceremony are, from the left: Mr Pule Makgoe, MEC for Education in the Free State and member of the UFS Council; Judge Ian van der Merwe, Chairperson of the UFS Council; Dr Khotso Mokhele, newly inaugurated Chancellor of the UFS; and Prof. Jonathan Jansen, Vice-Chancellor and Rector of the UFS.
Photo: Dries Myburgh

Dr Khotso Mokhele joined the ranks of distinguished Chancellors of the University of the Free State (UFS) with his inauguration as the new Chancellor of the institution at a ceremony on Friday, 19 November 2010.

The lustrous ceremony took place on the Main Campus in Bloemfontein and was attended by hundreds of guests from all over South Africa.

Dr Mokhele said in his speech: “I am excited to have been invited by the UFS to join its community at the time when it is attempting to reinvent itself into an institution that will be counted amongst those that will shape the local, regional, national will, and by so doing, contribute to the shaping of an African will.”

Dr Mokhele follows in the footsteps of Dr Franklin Sonn, former Ambassador of South Africa in the United States of America and receiver of many awards, acknowledgements, and honorary doctorates, who retired earlier this year. Dr Sonn was preceded by Ms Winkie Direko, former premier of the Free State.

His acceptance of the role of Chancellor is a great honour for the UFS.

According to Prof. Jonathan Jansen, Vice-Chancellor and Rector of the UFS, it is a proud moment to welcome someone from the Province as the Chancellor of this university. With his strong academic values and deep sense of human compassion, Dr Mokhele is one of but a few uncompromising leaders. He is also an inspiring, determined pioneer and a role model to all our students.

Few have done as much to guide the development of science in South Africa since democracy in 1994 as Dr Mokhele. His vision and actions as a senior science manager have been guided by his deep conviction that for a truly democratic society to emerge in South Africa all people must be empowered to be its architects and must have unhindered access to those careers upon which our economy is built.

Dr Khotso Mokhele was born and raised in Bloemfontein. After matriculating from the Moroka High School he went on to study at Fort Hare, where he graduated with a B.Sc. in Agriculture, winning the Massey-Ferguson award for the best student in that field. As a recipient of the prestigious Fulbright-Hays Scholarship, he entered the University of California in Davis where he took a M.Sc. and a Ph.D. degree, both in Microbiology. He was awarded post-doctoral fellowships at the Johns Hopkins University School of Medicine in Baltimore, Maryland, and at the University of Pennsylvania, Philadelphia.

Dr Mokhele returned to South Africa in 1987, set on becoming a top-class academic and researcher. He held lecturing posts at the Universities of Fort Hare (1987-1989) and Cape Town (1990-1992). In 1992 he joined the Foundation for Research Development (FRD) as one of its Vice-Presidents. He succeeded to its presidency in 1996 and then from 1999 to 2006 became the first President of the National Research Foundation (NRF).  He successfully merged the FRD and the Centre for Science Development of the Human Sciences Research Council. Under his visionary leadership the NRF has come to play a pivotal role in the development agenda of the country. He was also instrumental in the establishment of the South African Academy of Sciences serving as its founder president (1996-1998).

Dr Khotso Mokhele's contribution to science in South Africa has received wide recognition locally and abroad. He has received nine honorary doctorates. He was made a Chevalier of the Legion of Honour by the President of France in recognition of his personal efforts in strengthening scientific ties between France and South Africa, and was appointed a director of the Salzburg Seminar, an institution focused on global change, and subsequently a member of its Council of Senior Fellows.

He also serves on the boards of major companies such as Implats, Adcock Ingram and Afrox.

Media Release
Issued by: Lacea Loader
Director: Strategic Communication (actg)
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl@ufs.ac.za19 November 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept