Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story University of the Free State | Photo Supplied
Dr Hossein Naghizadeh and Refilwe Lediga
Collaborative innovation in action: Researchers from the University of the Free State’s Green Concrete Lab have partnered with the University of Johannesburg to advance 3D printing technologies using sustainable concrete materials. Pictured (from left): Dr Hossein Naghizadeh, Senior Lecturer in Engineering Sciences at UFS, and Refilwe Lediga, Concrete Printing Research Expert in the Department of Civil Engineering Technology at UJ.

In an ambitious and interdisciplinary effort to address today’s Grand Challenges, researchers at the University of the Free State (UFS) are exploring how nature’s oldest life forms – stromatolites – can inspire cutting-edge innovations in industrial ecology and marine conservation.  Drawing from biomimicry, 3D printing, and microbial engineering, their work showcases the convergence of ecological insight with modern technology. 

“One such example is replicating the structures of stromatolites – some of the earliest evidence of life - using green cement and 3D printing, the latest technology in industrial ecology,” explains Dr Jacques Maritz, Head of the Unit of Engineering Sciences at UFS. 

 

Ancient structures, modern science  

Stromatolites are layered microbial formations created by ancient cyanobacteria and date back over 3.5 billion years. These living fossils, found in fossil records and rare modern environments like Shark Bay in Australia, grow through a combination of photosynthesis, sediment trapping, and calcium carbonate precipitation. Not only do they support biodiversity, but they also play a vital role in natural carbon sequestration. 

UFS researchers are harnessing the lessons from these ancient formations to address urgent environmental challenges. In particular, Dr Yolandi Schoeman, Senior Lecturer at the Centre for Biogeochemistry, is leading efforts to cultivate hybrid stromatolites in controlled environments, using microbial consortia grown on 3D-printed scaffolds.  

“At UFS, we are reimagining stromatolite formation through both artificial structural replication and biological cultivation, bridging industrial ecology and microbial engineering to address modern environmental challenges,” says Dr Schoeman. 

 

Ecological engineering for reef restoration 

The rapid decline of marine biodiversity and the degradation of natural reef ecosystems have prompted ecological engineers to develop innovative solutions. At the UFS Green Concrete Lab, researchers are pioneering the design of artificial reefs using 3D-printed, low-carbon geopolymer concrete – a material formulated from industrial by-products such as fly ash and slag. 

Artificial reefs mimic natural reef complexity and serve as critical habitats for marine life, from fish and crustaceans to coral polyps and algae. Algae, in particular, are key to marine ecosystems due to their roles in nutrient cycling, oxygen production, and carbon capture. 

“Green concrete refers to concrete that utilises alternative binders and industrial by-products, significantly reducing the environmental footprint. At UFS, we are focusing on geopolymer concrete, which eliminates the high-energy processes associated with Portland cement, while offering greater chemical resistance - ideal for marine applications,” explains Dr Abdolhossein Naghizadeh from the Unit of Engineering Sciences. 

 

3D printing nature’s complexity 

One of the challenges in artificial reef development is replicating biologically inspired geometries that support diverse marine ecosystems. Traditional construction methods often fail in this regard, but additive manufacturing, or 3D concrete printing, is providing a solution.  

The UFS Green Concrete Lab, in collaboration with the University of Johannesburg, is developing reef modules with intricate geometries and natural surface textures. These features support coral and algae attachment, accelerate ecological colonisation, and enhance habitat functionality. Biochar-based compost filters are also being integrated to aid algae-driven wastewater treatment. 

A particularly novel avenue of research involves using 3D printing to recreate stromatolite structures. These serve as ancient blueprints for modern reef design, merging deep-time ecological understanding with advanced material science. 

 

Biologically engineered hybrid stromatolites  

In parallel to structural efforts, UFS is advancing biological approaches to stromatolite cultivation. From July 2025, researchers in the Unit of Engineering Sciences will initiate a large-scale experiment using microbial consortia in 60-litre tanks, scaling up to 1 m² hypersaline ponds. 3D-printed conical scaffolds, coated with materials such as PP-CaCO₃, hydroxyapatite, and silica gel, will accelerate microbial colonisation and lamination. 

The goal: to achieve stromatolite growth of 14-16 mm in just 28 days - over 150 times faster than in nature. These hybrid systems are expected to produce 7-8 mg/L/day of oxygen, sequester carbon at 3.2 g/m²/day, and remove up to 90% of nitrates and phosphates from water. The potential applications extend from terrestrial ecosystem restoration to extraterrestrial life-support systems. 

 

A multidisciplinary vision for sustainability 

This work exemplifies the strength of interdisciplinary research at UFS, combining civil engineering, mechatronics, marine ecology, chemistry, microbiology, and digital fabrication. The Ecological Engineering Sciences stream fosters a vibrant environment for postgraduate students to develop practical, impactful solutions.  

The Green Concrete Lab is central to these efforts, offering students and researchers access to advanced technologies and collaborative networks. Through their innovative work in 3D-printed green concrete and microbial systems, UFS researchers are addressing biodiversity loss, advancing sustainable construction, and contributing to the global climate agenda. 

“Whether it's rethinking materials, restoring ecosystems, or redefining what concrete can be, our research is laying the foundation for a better, more sustainable world beneath the waves,” concludes Dr Maritz. 

News Archive

UFS agreement on staff salary adjustment of 7.5%
2011-11-10

 
At this year's salary negotiations were from the left, front: Mr Lourens Geyer, Director: Human Resources; Ms Ronel van der Walt, Manager: Labour Relations; Ms Tobeka Mehlomakulu, Vice Chairperson: NEHAWU; Prof. Johan Grobbelaar, convener of the salary negotiations; back: Mr Ruben Gouws, Vice Chairperson of UVPERSU, Ms Esta Knoetze, Vice Chairperson of UVPERSU, Mr David Mocwana, fultime shopsteward for NEHAWU; Mr Daniel Sepeame, Chairperson of NEHAWU, Prof. Nicky Morgan, Vice-Rector: Operations; Prof. Jonathan Jansen, Vice-Chancellor and Rector of the UFS; Ms Mamokete Ratsoane, Deputy Director: Human Resources and Ms Anita Lombard, Chief Executive Officer: UVPERSU.
Photo: Leonie Bolleurs


Salary adjustment of 7,5%

The University of the Free State’s (UFS) management and trade unions have agreed on a general salary adjustment of 7,5% for 2012.
 
The negotiating parties agreed that adjustments could vary proportionally from a minimum of 7,3% to a maximum of 8,5%, depending on the government subsidy and the model forecasts.
 
The service benefits of staff will be adjusted to 9,82% for 2012. This is according to the estimated government subsidy that will be received in 2012.
 

UVPERSU and NEHAWU sign
 
The agreement was signed (today) Tuesday 8 November 2011 by representatives of the university’s senior leadership and the trade unions UVPERSU and NEHAWU.
 

R2 500 bonus
 
An additional once-off, non-pensionable bonus of R2 500 will also be paid to staff with their December 2011 salary payment. The bonus will be paid to all staff members who were in the employment of the university on UFS conditions of service on 31 December 2011 and who assumed duties before 1 October 2011. The bonus is payable in recognition of the role played by staff during the year to promote the UFS as a university of excellence and as confirmation of the role and effectiveness of the remuneration model.
 
It is the intention to pass the maximum benefit possible on to staff without exceeding the limits of financial sustainability of the institution. For this reason, the negotiating parties reaffirmed their commitment to the Multiple-year, Income-related Remuneration Improvement Model used as a framework for negotiations. The model and its applications are unique and have as a point of departure that the UFS must be and remains financially sustainable. 
 
 
Capacity building and structural adjustments
 
Agreement was reached that 1,54% will be allocated for growth in capacity building to ensure that provision is made for the growth of the UFS over the last few years. A further 0,78% will be allocated to structural adjustments.
 
Agreement about additional matters such as funeral loans was also reached.
 
“The Mutual Forum is particularly pleased that a general salary adjustment of 7,5 % could be negotiated for 2012. Taken into account the world financial downturn, marked cuts in university subsidies and the growth of the university, this is a remarkable achievement,” says Prof. Johan Grobbelaar, Chairperson of the Mutual Negotiation Forum. 
 

Increase for Professors, Deputy and Assistant Directors
 
According to Prof. Grobbelaar the Mutual Forum is also pleased that Professors and Deputy and Assistant Directors will benefit from the structural adjustments. These increases will align the positions with the median of the higher education market. The 1,54% allocated for growth will ensure that appointments can be made where the needs are the highest. The special year-end bonus of R2 500 is an early Christmas gift and implies that the employees in lower salary categories receive an effective increase of almost 9,5 %.
 
“The UFS is in a unique position when it comes to salary negotiations, because the funding model developed more than a decade ago, has stood the test of time and ensured that the staff receive the maximum possible benefits. Of particular note is the fact that the two majority unions (UVPERSU and NEHAWU) work together. The mutual trust between the unions and management is an example of how large organisations can function to reach specific goals and staff harmony,” says Prof. Grobbelaar. 

The implementation date for the salary adjustment is 1 January 2012. The adjustment will be calculated on the total remuneration package.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept