Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story University of the Free State | Photo Supplied
Dr Hossein Naghizadeh and Refilwe Lediga
Collaborative innovation in action: Researchers from the University of the Free State’s Green Concrete Lab have partnered with the University of Johannesburg to advance 3D printing technologies using sustainable concrete materials. Pictured (from left): Dr Hossein Naghizadeh, Senior Lecturer in Engineering Sciences at UFS, and Refilwe Lediga, Concrete Printing Research Expert in the Department of Civil Engineering Technology at UJ.

In an ambitious and interdisciplinary effort to address today’s Grand Challenges, researchers at the University of the Free State (UFS) are exploring how nature’s oldest life forms – stromatolites – can inspire cutting-edge innovations in industrial ecology and marine conservation.  Drawing from biomimicry, 3D printing, and microbial engineering, their work showcases the convergence of ecological insight with modern technology. 

“One such example is replicating the structures of stromatolites – some of the earliest evidence of life - using green cement and 3D printing, the latest technology in industrial ecology,” explains Dr Jacques Maritz, Head of the Unit of Engineering Sciences at UFS. 

 

Ancient structures, modern science  

Stromatolites are layered microbial formations created by ancient cyanobacteria and date back over 3.5 billion years. These living fossils, found in fossil records and rare modern environments like Shark Bay in Australia, grow through a combination of photosynthesis, sediment trapping, and calcium carbonate precipitation. Not only do they support biodiversity, but they also play a vital role in natural carbon sequestration. 

UFS researchers are harnessing the lessons from these ancient formations to address urgent environmental challenges. In particular, Dr Yolandi Schoeman, Senior Lecturer at the Centre for Biogeochemistry, is leading efforts to cultivate hybrid stromatolites in controlled environments, using microbial consortia grown on 3D-printed scaffolds.  

“At UFS, we are reimagining stromatolite formation through both artificial structural replication and biological cultivation, bridging industrial ecology and microbial engineering to address modern environmental challenges,” says Dr Schoeman. 

 

Ecological engineering for reef restoration 

The rapid decline of marine biodiversity and the degradation of natural reef ecosystems have prompted ecological engineers to develop innovative solutions. At the UFS Green Concrete Lab, researchers are pioneering the design of artificial reefs using 3D-printed, low-carbon geopolymer concrete – a material formulated from industrial by-products such as fly ash and slag. 

Artificial reefs mimic natural reef complexity and serve as critical habitats for marine life, from fish and crustaceans to coral polyps and algae. Algae, in particular, are key to marine ecosystems due to their roles in nutrient cycling, oxygen production, and carbon capture. 

“Green concrete refers to concrete that utilises alternative binders and industrial by-products, significantly reducing the environmental footprint. At UFS, we are focusing on geopolymer concrete, which eliminates the high-energy processes associated with Portland cement, while offering greater chemical resistance - ideal for marine applications,” explains Dr Abdolhossein Naghizadeh from the Unit of Engineering Sciences. 

 

3D printing nature’s complexity 

One of the challenges in artificial reef development is replicating biologically inspired geometries that support diverse marine ecosystems. Traditional construction methods often fail in this regard, but additive manufacturing, or 3D concrete printing, is providing a solution.  

The UFS Green Concrete Lab, in collaboration with the University of Johannesburg, is developing reef modules with intricate geometries and natural surface textures. These features support coral and algae attachment, accelerate ecological colonisation, and enhance habitat functionality. Biochar-based compost filters are also being integrated to aid algae-driven wastewater treatment. 

A particularly novel avenue of research involves using 3D printing to recreate stromatolite structures. These serve as ancient blueprints for modern reef design, merging deep-time ecological understanding with advanced material science. 

 

Biologically engineered hybrid stromatolites  

In parallel to structural efforts, UFS is advancing biological approaches to stromatolite cultivation. From July 2025, researchers in the Unit of Engineering Sciences will initiate a large-scale experiment using microbial consortia in 60-litre tanks, scaling up to 1 m² hypersaline ponds. 3D-printed conical scaffolds, coated with materials such as PP-CaCO₃, hydroxyapatite, and silica gel, will accelerate microbial colonisation and lamination. 

The goal: to achieve stromatolite growth of 14-16 mm in just 28 days - over 150 times faster than in nature. These hybrid systems are expected to produce 7-8 mg/L/day of oxygen, sequester carbon at 3.2 g/m²/day, and remove up to 90% of nitrates and phosphates from water. The potential applications extend from terrestrial ecosystem restoration to extraterrestrial life-support systems. 

 

A multidisciplinary vision for sustainability 

This work exemplifies the strength of interdisciplinary research at UFS, combining civil engineering, mechatronics, marine ecology, chemistry, microbiology, and digital fabrication. The Ecological Engineering Sciences stream fosters a vibrant environment for postgraduate students to develop practical, impactful solutions.  

The Green Concrete Lab is central to these efforts, offering students and researchers access to advanced technologies and collaborative networks. Through their innovative work in 3D-printed green concrete and microbial systems, UFS researchers are addressing biodiversity loss, advancing sustainable construction, and contributing to the global climate agenda. 

“Whether it's rethinking materials, restoring ecosystems, or redefining what concrete can be, our research is laying the foundation for a better, more sustainable world beneath the waves,” concludes Dr Maritz. 

News Archive

UFS sets trend for higher education institutions
2005-09-21

The University of the Free State (UFS) offers more service-learning courses than any other higher education institution in the country and has the highest number of students enrolled for these service-learning courses.

This was the research findings on higher education institutions conducted between 2001 and 2004 by the Joint Education Trust (JET) into service-learning courses. These are courses which seek to integrate service to the community into the academic core of higher education institutions.

The results of this research indicated that the UFS is one of the few higher education institutions in South Africa that have made progress in integrating community engagement into the mainstream academy.

According to the findings 2 233 students at the UFS participated in service-learning courses supported by JET, while 858 students at the University of Transkei (UNITRA), 636 students at the University of the Western Cape (UWC) and only 600 students at the University of the Witwatersrand (WITS) participated in service-learning courses.

In total there were 6 930 students participating in service learning courses supported by the JET at 10 institutions throughout the country.

The research also found that out of a total of 182 service-learning courses supported by JET countrywide, the UFS had the highest number of such courses at 42, followed by WITS with 28, the University of Kwazulu Natal with 26, UWC 24 and UNITRA with 22.

Nationally, most of the service-learning courses at higher education institutions are offered in the human sciences (62), followed by health sciences (37), education (26), agriculture (14), and economic sciences (11).

According to leading academics, service-learning is a credit-bearing, educational exercise in which students participate in an organised service activity that meets identified community needs and helps the student to gain a deeper understanding of course content and a sense of civic responsibility.

Reacting to the research findings, the Rector and Vice-chancellor of the UFS, Prof Frederick Fourie, said the university feels strongly that there should be integration of service-learning into the academic core of the institution.

“Through service-learning modules the UFS can give expression to its role of service to the community as an institution of higher learning, producing quality graduates who understand the communities in which they will have to function for the rest of their lives,” Prof Fourie said.

According to Mr Jo Lazarus, the project manager of the Community-Higher Education – Service Partnership (CHESP), which falls under the JET, a number of institutions have identified community engagement as a strategic priority and have allocated significant resources from their central budget towards its implementation.

Mr Lazarus said most students have an overwhelmingly positive attitude towards service learning.

“A large percentage of students surveyed indicated that their service-learning course helped to improve their relationship skills, leadership skills and project planning abilities. As significant is the fact that these courses also benefited them in terms of their awareness of cultural differences and opened their eyes about their own cultural stereotypes,” said Mr Lazarus.

“The key challenge still hampering the integration of service-learning as a core function of academic activity is that some institutions still see service-learning as an add-on, and nice-to-have activity,” he said.

According to Mr Lazarus higher education must demonstrate social responsibility and commitment to the common good by making available expertise and infrastructure for service-learning as a form of community engagement.

Media release
Issued by:  Lacea Loader
   Media Representative
   Tel:  (051) 401-2584
   Cell:  083 645 2454
   E-mail:  loaderl.stg@mail.uovs.ac.za
   20 September 2005

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept