Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story University of the Free State | Photo Supplied
Dr Hossein Naghizadeh and Refilwe Lediga
Collaborative innovation in action: Researchers from the University of the Free State’s Green Concrete Lab have partnered with the University of Johannesburg to advance 3D printing technologies using sustainable concrete materials. Pictured (from left): Dr Hossein Naghizadeh, Senior Lecturer in Engineering Sciences at UFS, and Refilwe Lediga, Concrete Printing Research Expert in the Department of Civil Engineering Technology at UJ.

In an ambitious and interdisciplinary effort to address today’s Grand Challenges, researchers at the University of the Free State (UFS) are exploring how nature’s oldest life forms – stromatolites – can inspire cutting-edge innovations in industrial ecology and marine conservation.  Drawing from biomimicry, 3D printing, and microbial engineering, their work showcases the convergence of ecological insight with modern technology. 

“One such example is replicating the structures of stromatolites – some of the earliest evidence of life - using green cement and 3D printing, the latest technology in industrial ecology,” explains Dr Jacques Maritz, Head of the Unit of Engineering Sciences at UFS. 

 

Ancient structures, modern science  

Stromatolites are layered microbial formations created by ancient cyanobacteria and date back over 3.5 billion years. These living fossils, found in fossil records and rare modern environments like Shark Bay in Australia, grow through a combination of photosynthesis, sediment trapping, and calcium carbonate precipitation. Not only do they support biodiversity, but they also play a vital role in natural carbon sequestration. 

UFS researchers are harnessing the lessons from these ancient formations to address urgent environmental challenges. In particular, Dr Yolandi Schoeman, Senior Lecturer at the Centre for Biogeochemistry, is leading efforts to cultivate hybrid stromatolites in controlled environments, using microbial consortia grown on 3D-printed scaffolds.  

“At UFS, we are reimagining stromatolite formation through both artificial structural replication and biological cultivation, bridging industrial ecology and microbial engineering to address modern environmental challenges,” says Dr Schoeman. 

 

Ecological engineering for reef restoration 

The rapid decline of marine biodiversity and the degradation of natural reef ecosystems have prompted ecological engineers to develop innovative solutions. At the UFS Green Concrete Lab, researchers are pioneering the design of artificial reefs using 3D-printed, low-carbon geopolymer concrete – a material formulated from industrial by-products such as fly ash and slag. 

Artificial reefs mimic natural reef complexity and serve as critical habitats for marine life, from fish and crustaceans to coral polyps and algae. Algae, in particular, are key to marine ecosystems due to their roles in nutrient cycling, oxygen production, and carbon capture. 

“Green concrete refers to concrete that utilises alternative binders and industrial by-products, significantly reducing the environmental footprint. At UFS, we are focusing on geopolymer concrete, which eliminates the high-energy processes associated with Portland cement, while offering greater chemical resistance - ideal for marine applications,” explains Dr Abdolhossein Naghizadeh from the Unit of Engineering Sciences. 

 

3D printing nature’s complexity 

One of the challenges in artificial reef development is replicating biologically inspired geometries that support diverse marine ecosystems. Traditional construction methods often fail in this regard, but additive manufacturing, or 3D concrete printing, is providing a solution.  

The UFS Green Concrete Lab, in collaboration with the University of Johannesburg, is developing reef modules with intricate geometries and natural surface textures. These features support coral and algae attachment, accelerate ecological colonisation, and enhance habitat functionality. Biochar-based compost filters are also being integrated to aid algae-driven wastewater treatment. 

A particularly novel avenue of research involves using 3D printing to recreate stromatolite structures. These serve as ancient blueprints for modern reef design, merging deep-time ecological understanding with advanced material science. 

 

Biologically engineered hybrid stromatolites  

In parallel to structural efforts, UFS is advancing biological approaches to stromatolite cultivation. From July 2025, researchers in the Unit of Engineering Sciences will initiate a large-scale experiment using microbial consortia in 60-litre tanks, scaling up to 1 m² hypersaline ponds. 3D-printed conical scaffolds, coated with materials such as PP-CaCO₃, hydroxyapatite, and silica gel, will accelerate microbial colonisation and lamination. 

The goal: to achieve stromatolite growth of 14-16 mm in just 28 days - over 150 times faster than in nature. These hybrid systems are expected to produce 7-8 mg/L/day of oxygen, sequester carbon at 3.2 g/m²/day, and remove up to 90% of nitrates and phosphates from water. The potential applications extend from terrestrial ecosystem restoration to extraterrestrial life-support systems. 

 

A multidisciplinary vision for sustainability 

This work exemplifies the strength of interdisciplinary research at UFS, combining civil engineering, mechatronics, marine ecology, chemistry, microbiology, and digital fabrication. The Ecological Engineering Sciences stream fosters a vibrant environment for postgraduate students to develop practical, impactful solutions.  

The Green Concrete Lab is central to these efforts, offering students and researchers access to advanced technologies and collaborative networks. Through their innovative work in 3D-printed green concrete and microbial systems, UFS researchers are addressing biodiversity loss, advancing sustainable construction, and contributing to the global climate agenda. 

“Whether it's rethinking materials, restoring ecosystems, or redefining what concrete can be, our research is laying the foundation for a better, more sustainable world beneath the waves,” concludes Dr Maritz. 

News Archive

Publication on indigenous knowledge systems
2005-10-21

 

 

Dr Otsile Ntsoane (acting Director: IKS, Department of Science and Technology) and Prof Philip Nel (Director:  Africa Studies at the UFS and guest editor of the publication) at the launch of the publication

UFS launches most comprehensive publication on indigenous knowledge systems
A unique collection of essays on Indigenous Knowledge Systems (IKS) was launched yesterday (20 October 2005) by the University of the Free State’s (UFS) Programme of Africa Studies.

The essays are published as a special edition of INDILINGA, the African Journal for Indigenous Knowledge Systems and is an outcome of the colloquium on Indigenous Knowledge Systems that was presented last year by the UFS Director of Africa Studies in cooperation with the National Research Council.

“The amount and diversity of materials on IKS brought together under one cover is unique as there are no other South African publications of this magnitude on this issue.  It contains papers of international experts on IKS such as Prof Fritz Wallner from Austria and Prof Gayatri Spivak, foremost postcolonial theorist from India,” said Prof Philip Nel, Director of Africa Studies and guest editor of the publication.

“The publication is a rich source field for students and scholars to exploit because most of the sources quoted in the articles are recent, fresh and relevant.  The contributors are largely people responsible for managing, fostering and studying IKS in a responsible manner,” said Prof Nel.

“An added value of the publication is the inclusion of the policy document on IKS that was adopted by Cabinet in November 2004,” said Prof Nel.


“Millions of people in South Africa are faced with the painful choice of abandoning their heritage.  In this choice, the study and management of IKS has a major role to play; on the one hand, to encourage as much assimilation of traditional knowledge as possible into the modern systems, and on the other hand to provide a “language” and a “grammar” for indigenous people through which they can access modernity,” said Prof Nel.

The IKS debate involves questions of African identity, protection of indigenous communities and practices, political aspects as well as the scientific integrity of the enterprise. 

The publication displays the range of burning questions that have to be resolved in this field such as mainstreaming IKS in academic debate and practice, recognition and protection of the knowledge holders, bio-prospecting and bio-piracy, bio and ethnic healing, lack of textbooks and field manuals, etc and will prove worthwhile for future researchers.

 “One of the main reasons for publishing this volume is the fact that IKS should be studied not only to provide a sense of pride in the past, or  to engender respect for indigenous peoples, but also to enable people in indigenous mind sets to make a better transition into the world of science and technology,” said Prof Nel.

The guest speaker at the launch was Dr Otsile Ntsoane, acting Director of IKS at the Department of Science and Technology.  In his speech Dr Ntsoane stressed the symbolic and concrete value of the publication.  “The publication can have a great social impact and the research results can contribute to chancing the economic landscape of South Africa,” he said.

The publication can be purchased at R150 per copy.  For more information, Ms Steffi Cawood, Programme Coordinator for Africa Studies at the UFS can be contacted at (051) 401-2614.

Media release
Issued by:Lacea Loader
Media Representative
Tel:   (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
21 October 2005
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept