Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story University of the Free State | Photo Supplied
Dr Hossein Naghizadeh and Refilwe Lediga
Collaborative innovation in action: Researchers from the University of the Free State’s Green Concrete Lab have partnered with the University of Johannesburg to advance 3D printing technologies using sustainable concrete materials. Pictured (from left): Dr Hossein Naghizadeh, Senior Lecturer in Engineering Sciences at UFS, and Refilwe Lediga, Concrete Printing Research Expert in the Department of Civil Engineering Technology at UJ.

In an ambitious and interdisciplinary effort to address today’s Grand Challenges, researchers at the University of the Free State (UFS) are exploring how nature’s oldest life forms – stromatolites – can inspire cutting-edge innovations in industrial ecology and marine conservation.  Drawing from biomimicry, 3D printing, and microbial engineering, their work showcases the convergence of ecological insight with modern technology. 

“One such example is replicating the structures of stromatolites – some of the earliest evidence of life - using green cement and 3D printing, the latest technology in industrial ecology,” explains Dr Jacques Maritz, Head of the Unit of Engineering Sciences at UFS. 

 

Ancient structures, modern science  

Stromatolites are layered microbial formations created by ancient cyanobacteria and date back over 3.5 billion years. These living fossils, found in fossil records and rare modern environments like Shark Bay in Australia, grow through a combination of photosynthesis, sediment trapping, and calcium carbonate precipitation. Not only do they support biodiversity, but they also play a vital role in natural carbon sequestration. 

UFS researchers are harnessing the lessons from these ancient formations to address urgent environmental challenges. In particular, Dr Yolandi Schoeman, Senior Lecturer at the Centre for Biogeochemistry, is leading efforts to cultivate hybrid stromatolites in controlled environments, using microbial consortia grown on 3D-printed scaffolds.  

“At UFS, we are reimagining stromatolite formation through both artificial structural replication and biological cultivation, bridging industrial ecology and microbial engineering to address modern environmental challenges,” says Dr Schoeman. 

 

Ecological engineering for reef restoration 

The rapid decline of marine biodiversity and the degradation of natural reef ecosystems have prompted ecological engineers to develop innovative solutions. At the UFS Green Concrete Lab, researchers are pioneering the design of artificial reefs using 3D-printed, low-carbon geopolymer concrete – a material formulated from industrial by-products such as fly ash and slag. 

Artificial reefs mimic natural reef complexity and serve as critical habitats for marine life, from fish and crustaceans to coral polyps and algae. Algae, in particular, are key to marine ecosystems due to their roles in nutrient cycling, oxygen production, and carbon capture. 

“Green concrete refers to concrete that utilises alternative binders and industrial by-products, significantly reducing the environmental footprint. At UFS, we are focusing on geopolymer concrete, which eliminates the high-energy processes associated with Portland cement, while offering greater chemical resistance - ideal for marine applications,” explains Dr Abdolhossein Naghizadeh from the Unit of Engineering Sciences. 

 

3D printing nature’s complexity 

One of the challenges in artificial reef development is replicating biologically inspired geometries that support diverse marine ecosystems. Traditional construction methods often fail in this regard, but additive manufacturing, or 3D concrete printing, is providing a solution.  

The UFS Green Concrete Lab, in collaboration with the University of Johannesburg, is developing reef modules with intricate geometries and natural surface textures. These features support coral and algae attachment, accelerate ecological colonisation, and enhance habitat functionality. Biochar-based compost filters are also being integrated to aid algae-driven wastewater treatment. 

A particularly novel avenue of research involves using 3D printing to recreate stromatolite structures. These serve as ancient blueprints for modern reef design, merging deep-time ecological understanding with advanced material science. 

 

Biologically engineered hybrid stromatolites  

In parallel to structural efforts, UFS is advancing biological approaches to stromatolite cultivation. From July 2025, researchers in the Unit of Engineering Sciences will initiate a large-scale experiment using microbial consortia in 60-litre tanks, scaling up to 1 m² hypersaline ponds. 3D-printed conical scaffolds, coated with materials such as PP-CaCO₃, hydroxyapatite, and silica gel, will accelerate microbial colonisation and lamination. 

The goal: to achieve stromatolite growth of 14-16 mm in just 28 days - over 150 times faster than in nature. These hybrid systems are expected to produce 7-8 mg/L/day of oxygen, sequester carbon at 3.2 g/m²/day, and remove up to 90% of nitrates and phosphates from water. The potential applications extend from terrestrial ecosystem restoration to extraterrestrial life-support systems. 

 

A multidisciplinary vision for sustainability 

This work exemplifies the strength of interdisciplinary research at UFS, combining civil engineering, mechatronics, marine ecology, chemistry, microbiology, and digital fabrication. The Ecological Engineering Sciences stream fosters a vibrant environment for postgraduate students to develop practical, impactful solutions.  

The Green Concrete Lab is central to these efforts, offering students and researchers access to advanced technologies and collaborative networks. Through their innovative work in 3D-printed green concrete and microbial systems, UFS researchers are addressing biodiversity loss, advancing sustainable construction, and contributing to the global climate agenda. 

“Whether it's rethinking materials, restoring ecosystems, or redefining what concrete can be, our research is laying the foundation for a better, more sustainable world beneath the waves,” concludes Dr Maritz. 

News Archive

First M degree in Sport Medicine commences at the UFS
2006-02-03

Some of the guests that attended the launch of the M degree in Sport Medicine were from the left Dr Derik Coetzee (senior lecturer at the UFS Department of Human Movement Science and one of the tutors of the programme); Dr Sorita Viljoen (a student from Bloemfontein); dr Stephan Pretorius (a student from Pretoria) ; Dr Louis Holtzhausen (Programme Director:  Sport Medicine at the UFS) and Prof Teuns Verschoor (Vice-Rector:  Academic Operations at the UFS).
Photo: Lacea Loader


First M degree in Sport Medicine commences at the UFS   
 

The classes of the first group of nine students registered for the M degree in Sport Medicine at the University of the Free State (UFS) commenced at the School of Medicine this week.

This is the first degree of its kind presented by the UFS.  Only two other universities in South Africa are presenting the course, namely the University of Cape Town and the University of Pretoria.

“It is an important new subject field for medicine in South Africa and is aimed at medical doctors,” said Dr Louis Holtzhausen, Programme Director of Sport Medicine in the School of Medicine and head of the UFS Sport and Exercise Medicine Clinic.

The course focuses on the wellness and healthy lifestyle of patients and also intercepts the growing need for a specialized medical service for sportsmen,” said Dr Holtzhausen.

Athletes’ needs for specialised medical care have increased dramatically during the past ten years.  “The primary health care practitioner has already surrendered a great deal of the athletics community to disciplines such as physiotherapy, bio kinetics, homeopathy, chirology and other alternative disciplines because of a lack to provide for these practitioners,” said Dr Holtzhausen.

“The course is especially in demand with general practitioners because they want to deliver a more specialized service to patients.  With this course a student can call him/herself a sport doctor and will then not only be able to present patients with scientifically funded exercise, food supplements and advice on their lifestyle, but will also be able to help with the rehabilitation of patients with chronic illnesses,” said Dr Holtzhausen.

“The greatest medical care expense in South African stems from lifestyle bound illnesses such as depression, strokes and obesesiveness.  The M degree in Sports Medicine at the UFS will intercept some of these problems,” said Dr Holtzhausen.

According to Dr Holtzhausen the duration of the degree is three years and it comprises of three legs.  In the first leg, attention is given to an athlete’s performance and how it can be improved with the correct methods and supplements.  In the second leg attention is given to the wellness of patients and the reversibility of the risk of illness and the exercise rehabilitation of chronic illnesses such as diabetes and hart problems to assist patients to exercise in a scientific way in order for them to start living optimally again.  In the third leg attention is given to a healthier lifestyle as a precautionary measure. 

The course also includes a lecture part (four attendance sessions of seven days each) and a thesis.  

“The new course is important for the UFS as the whole tendency in medicine is to move into a direction of a more affordable precaution.  There is no other qualification or programme with as much detail as this course,” he said.

Media release
Issued by: Lacea Loader
Media Representative
Tel:   (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
3 February 2006

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept