Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story University of the Free State | Photo Supplied
Dr Hossein Naghizadeh and Refilwe Lediga
Collaborative innovation in action: Researchers from the University of the Free State’s Green Concrete Lab have partnered with the University of Johannesburg to advance 3D printing technologies using sustainable concrete materials. Pictured (from left): Dr Hossein Naghizadeh, Senior Lecturer in Engineering Sciences at UFS, and Refilwe Lediga, Concrete Printing Research Expert in the Department of Civil Engineering Technology at UJ.

In an ambitious and interdisciplinary effort to address today’s Grand Challenges, researchers at the University of the Free State (UFS) are exploring how nature’s oldest life forms – stromatolites – can inspire cutting-edge innovations in industrial ecology and marine conservation.  Drawing from biomimicry, 3D printing, and microbial engineering, their work showcases the convergence of ecological insight with modern technology. 

“One such example is replicating the structures of stromatolites – some of the earliest evidence of life - using green cement and 3D printing, the latest technology in industrial ecology,” explains Dr Jacques Maritz, Head of the Unit of Engineering Sciences at UFS. 

 

Ancient structures, modern science  

Stromatolites are layered microbial formations created by ancient cyanobacteria and date back over 3.5 billion years. These living fossils, found in fossil records and rare modern environments like Shark Bay in Australia, grow through a combination of photosynthesis, sediment trapping, and calcium carbonate precipitation. Not only do they support biodiversity, but they also play a vital role in natural carbon sequestration. 

UFS researchers are harnessing the lessons from these ancient formations to address urgent environmental challenges. In particular, Dr Yolandi Schoeman, Senior Lecturer at the Centre for Biogeochemistry, is leading efforts to cultivate hybrid stromatolites in controlled environments, using microbial consortia grown on 3D-printed scaffolds.  

“At UFS, we are reimagining stromatolite formation through both artificial structural replication and biological cultivation, bridging industrial ecology and microbial engineering to address modern environmental challenges,” says Dr Schoeman. 

 

Ecological engineering for reef restoration 

The rapid decline of marine biodiversity and the degradation of natural reef ecosystems have prompted ecological engineers to develop innovative solutions. At the UFS Green Concrete Lab, researchers are pioneering the design of artificial reefs using 3D-printed, low-carbon geopolymer concrete – a material formulated from industrial by-products such as fly ash and slag. 

Artificial reefs mimic natural reef complexity and serve as critical habitats for marine life, from fish and crustaceans to coral polyps and algae. Algae, in particular, are key to marine ecosystems due to their roles in nutrient cycling, oxygen production, and carbon capture. 

“Green concrete refers to concrete that utilises alternative binders and industrial by-products, significantly reducing the environmental footprint. At UFS, we are focusing on geopolymer concrete, which eliminates the high-energy processes associated with Portland cement, while offering greater chemical resistance - ideal for marine applications,” explains Dr Abdolhossein Naghizadeh from the Unit of Engineering Sciences. 

 

3D printing nature’s complexity 

One of the challenges in artificial reef development is replicating biologically inspired geometries that support diverse marine ecosystems. Traditional construction methods often fail in this regard, but additive manufacturing, or 3D concrete printing, is providing a solution.  

The UFS Green Concrete Lab, in collaboration with the University of Johannesburg, is developing reef modules with intricate geometries and natural surface textures. These features support coral and algae attachment, accelerate ecological colonisation, and enhance habitat functionality. Biochar-based compost filters are also being integrated to aid algae-driven wastewater treatment. 

A particularly novel avenue of research involves using 3D printing to recreate stromatolite structures. These serve as ancient blueprints for modern reef design, merging deep-time ecological understanding with advanced material science. 

 

Biologically engineered hybrid stromatolites  

In parallel to structural efforts, UFS is advancing biological approaches to stromatolite cultivation. From July 2025, researchers in the Unit of Engineering Sciences will initiate a large-scale experiment using microbial consortia in 60-litre tanks, scaling up to 1 m² hypersaline ponds. 3D-printed conical scaffolds, coated with materials such as PP-CaCO₃, hydroxyapatite, and silica gel, will accelerate microbial colonisation and lamination. 

The goal: to achieve stromatolite growth of 14-16 mm in just 28 days - over 150 times faster than in nature. These hybrid systems are expected to produce 7-8 mg/L/day of oxygen, sequester carbon at 3.2 g/m²/day, and remove up to 90% of nitrates and phosphates from water. The potential applications extend from terrestrial ecosystem restoration to extraterrestrial life-support systems. 

 

A multidisciplinary vision for sustainability 

This work exemplifies the strength of interdisciplinary research at UFS, combining civil engineering, mechatronics, marine ecology, chemistry, microbiology, and digital fabrication. The Ecological Engineering Sciences stream fosters a vibrant environment for postgraduate students to develop practical, impactful solutions.  

The Green Concrete Lab is central to these efforts, offering students and researchers access to advanced technologies and collaborative networks. Through their innovative work in 3D-printed green concrete and microbial systems, UFS researchers are addressing biodiversity loss, advancing sustainable construction, and contributing to the global climate agenda. 

“Whether it's rethinking materials, restoring ecosystems, or redefining what concrete can be, our research is laying the foundation for a better, more sustainable world beneath the waves,” concludes Dr Maritz. 

News Archive

Shortage of quantity surveyors discussed at UFS
2006-03-24

During the recent visit of the Association of South African Quantity Surveyors (ASAQS) to the University of the Free State (UFS) were from the left Mr Egon Wortmann (Director: ASAQS), Prof Basie Verster (representative of the Free State on the ASAQS and head of the Department of Quantity Surveying and Construction Management at the UFS), Mr  Greyling Venter (Chairperson:  Free State branch of the ASAQS), Prof DG Brümmer(Vice-President:  ASAQS) and Mr  Patrick Waterson (President:  ASAQS).
Photo supplied

 

Shortage of quantity surveyors discussed at UFS

 “The South African building industry is experiencing an unprecedented high level of economic growth and prosperity.  This is causing a definite shortage of registered quantity surveyors,” said Mr Egon Wortmann, Director of the Association of South African Quantity Surveyors(ASAQS) during the association’s recent visit to the Department of Quantity Surveying and Construction Management at the University of the Free State (UFS).

 “This shortage is especially noticeable in local and national governments where unqualified and inexperienced staff, consultants and/or facilitators are now appointed,” said Mr Wortmann. 

 In doing so, the authorities that have adopted this approach are according to Mr Wortmann actually acting illegally and are not in compliance with the legal and statutory requirements of South Africa.  “These unprofessional practices are unproductive, it leads to frustration and is strongly condemned by the ASAQS,” he said.

 “The service delivery of these unqualified and unregistered service providers is often sub standard and does not comply to the legal requirements of the profession.  It may also result in the tarnishing of the image and high professional standards set by the quantity surveying profession,” said Mr Wortmann.

 “Universities offering programmes in quantity-surveying and construction management are also negatively affected by the high levels of activity in the building environment.  Suitable lecturing staff are leaving the academic institutions as they are attracted to better opportunities being offered in the building industry. The ability of the tertiary institutions to attract young academics, to train them and to keep them in the longer term, is therefore almost impossible”, said Prof Basie Verster, head of the Department of Quantity Surveying and Construction Management at the UFS and representative of the Free State on the ASAQS.

 According to Prof Verster the UFS supplies more than its quota of qualified quantity surveyors to the South African building industry.  “Although more than 460 students are registered in construction related programmes at the UFS, we are as the ASAQS’s concerned about the shortage of students that can enter the construction industry.  In our case, we  are experiencing a shortage in black female students,” he said.

 “Of the 460 postgraduate students, 38% are black of which 20% are female students.  Graduates do also not necessarily stay in the country.  As the UFS’s programmes are accredited overseas, a lot of our students leave the country for working opportunities elsewhere,” said Prof Verster.

 Mr Patrick Waterson, President of the ASAQS, appealed to quantity surveyors to, when they are approached, consider academic careers or to make themselves available to lecture on a part time basis.  “I also appeal to quantity-surveying practices, construction companies and developers to consider taking part in training activities,” he said.

 The ASAQS has over the years developed a proud tradition within the quantity-surveying profession. Consequently membership of this organisation is a sought after goal for many members within the building environment. International agreements with various countries are also in place whereby it is mutually agreed that local as well as overseas qualifications are mutually acceptable on a reciprocal basis. 

 A more recent addition to the list of agreements is the reciprocity agreement entered into with the Royal Institution of Chartered Surveyors which makes it possible for South African based quantity surveyors to practice in over 120 countries worldwide.

 Media release
Issued by: Lacea Loader
Media Representative
Tel:   (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za 
23 March 2006

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept