Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story University of the Free State | Photo Supplied
Dr Hossein Naghizadeh and Refilwe Lediga
Collaborative innovation in action: Researchers from the University of the Free State’s Green Concrete Lab have partnered with the University of Johannesburg to advance 3D printing technologies using sustainable concrete materials. Pictured (from left): Dr Hossein Naghizadeh, Senior Lecturer in Engineering Sciences at UFS, and Refilwe Lediga, Concrete Printing Research Expert in the Department of Civil Engineering Technology at UJ.

In an ambitious and interdisciplinary effort to address today’s Grand Challenges, researchers at the University of the Free State (UFS) are exploring how nature’s oldest life forms – stromatolites – can inspire cutting-edge innovations in industrial ecology and marine conservation.  Drawing from biomimicry, 3D printing, and microbial engineering, their work showcases the convergence of ecological insight with modern technology. 

“One such example is replicating the structures of stromatolites – some of the earliest evidence of life - using green cement and 3D printing, the latest technology in industrial ecology,” explains Dr Jacques Maritz, Head of the Unit of Engineering Sciences at UFS. 

 

Ancient structures, modern science  

Stromatolites are layered microbial formations created by ancient cyanobacteria and date back over 3.5 billion years. These living fossils, found in fossil records and rare modern environments like Shark Bay in Australia, grow through a combination of photosynthesis, sediment trapping, and calcium carbonate precipitation. Not only do they support biodiversity, but they also play a vital role in natural carbon sequestration. 

UFS researchers are harnessing the lessons from these ancient formations to address urgent environmental challenges. In particular, Dr Yolandi Schoeman, Senior Lecturer at the Centre for Biogeochemistry, is leading efforts to cultivate hybrid stromatolites in controlled environments, using microbial consortia grown on 3D-printed scaffolds.  

“At UFS, we are reimagining stromatolite formation through both artificial structural replication and biological cultivation, bridging industrial ecology and microbial engineering to address modern environmental challenges,” says Dr Schoeman. 

 

Ecological engineering for reef restoration 

The rapid decline of marine biodiversity and the degradation of natural reef ecosystems have prompted ecological engineers to develop innovative solutions. At the UFS Green Concrete Lab, researchers are pioneering the design of artificial reefs using 3D-printed, low-carbon geopolymer concrete – a material formulated from industrial by-products such as fly ash and slag. 

Artificial reefs mimic natural reef complexity and serve as critical habitats for marine life, from fish and crustaceans to coral polyps and algae. Algae, in particular, are key to marine ecosystems due to their roles in nutrient cycling, oxygen production, and carbon capture. 

“Green concrete refers to concrete that utilises alternative binders and industrial by-products, significantly reducing the environmental footprint. At UFS, we are focusing on geopolymer concrete, which eliminates the high-energy processes associated with Portland cement, while offering greater chemical resistance - ideal for marine applications,” explains Dr Abdolhossein Naghizadeh from the Unit of Engineering Sciences. 

 

3D printing nature’s complexity 

One of the challenges in artificial reef development is replicating biologically inspired geometries that support diverse marine ecosystems. Traditional construction methods often fail in this regard, but additive manufacturing, or 3D concrete printing, is providing a solution.  

The UFS Green Concrete Lab, in collaboration with the University of Johannesburg, is developing reef modules with intricate geometries and natural surface textures. These features support coral and algae attachment, accelerate ecological colonisation, and enhance habitat functionality. Biochar-based compost filters are also being integrated to aid algae-driven wastewater treatment. 

A particularly novel avenue of research involves using 3D printing to recreate stromatolite structures. These serve as ancient blueprints for modern reef design, merging deep-time ecological understanding with advanced material science. 

 

Biologically engineered hybrid stromatolites  

In parallel to structural efforts, UFS is advancing biological approaches to stromatolite cultivation. From July 2025, researchers in the Unit of Engineering Sciences will initiate a large-scale experiment using microbial consortia in 60-litre tanks, scaling up to 1 m² hypersaline ponds. 3D-printed conical scaffolds, coated with materials such as PP-CaCO₃, hydroxyapatite, and silica gel, will accelerate microbial colonisation and lamination. 

The goal: to achieve stromatolite growth of 14-16 mm in just 28 days - over 150 times faster than in nature. These hybrid systems are expected to produce 7-8 mg/L/day of oxygen, sequester carbon at 3.2 g/m²/day, and remove up to 90% of nitrates and phosphates from water. The potential applications extend from terrestrial ecosystem restoration to extraterrestrial life-support systems. 

 

A multidisciplinary vision for sustainability 

This work exemplifies the strength of interdisciplinary research at UFS, combining civil engineering, mechatronics, marine ecology, chemistry, microbiology, and digital fabrication. The Ecological Engineering Sciences stream fosters a vibrant environment for postgraduate students to develop practical, impactful solutions.  

The Green Concrete Lab is central to these efforts, offering students and researchers access to advanced technologies and collaborative networks. Through their innovative work in 3D-printed green concrete and microbial systems, UFS researchers are addressing biodiversity loss, advancing sustainable construction, and contributing to the global climate agenda. 

“Whether it's rethinking materials, restoring ecosystems, or redefining what concrete can be, our research is laying the foundation for a better, more sustainable world beneath the waves,” concludes Dr Maritz. 

News Archive

PhD students’ voices reverberate across Africa and beyond
2014-01-14

 

Noel Ndumeya, Tinashe Nyamunda, Ivo Mhike and Anusa Daimon
Photo: Hannes Pieterse
The Centre of Africa Studies (CAS) has been recruiting the best young scholars from across the SADC region – with magnificent success. In the span of six months, four PhD students have excelled both on the African continent and abroad.

Anusa Daimon, Noel Ndumeya, Ivo Mhike and Tinashe Nyamunda – the names of these distinguished students. Set against the backdrop of global excellence and competition, they have been awarded several positions at conferences and already published world-wide.

Anusa Daimon’s PhD studies at the CAS focuses on Malawian migrants and their descendants in Southern Africa. It explores issues of identity construction and agency among this group.

Since his arrival at the CAS, Daimon has won two fully-funded awards to attend international conferences and workshops. He was invited to attend the Young African Scholars Conference at Cambridge University in the UK. He also went to Brazil to the IGK Work and Human Lifecycle in Global History Summer Academy. This workshop explored the historical and modern meanings and practices of work in terms of ‘freedom’ and ‘unfreedom’.

Noel Ndumeya holds a special interest in environmental history and the aspects of conservation and conflict. His PhD hones in on land and agrarian studies with specific focus on South Eastern Zimbabwe.

Ndumeya has won an award from the African Studies Association United Kingdom (ASAUK). This earned him an invitation to Nairobi, Kenya, to work with an editor from the Journal of Southern Africa Studies (JSAS).

Ivo Mhike’s research specialises in youth culture and their relationship with the state. In his PhD he uses juvenile delinquency as a window towards an analysis of social constructs of youth behaviour. This includes youth policy and their institutional and administrative links to the state.

Mhike has been invited to attend the CODESRIA Child and Youth Institute in Dakar, Senegal, with the theme: Social Protection and the Citizen Rights of Vulnerable Children in Africa.

Tinashe Nyamunda specialises in African Economic History. His PhD thesis is entitled, “The State and Finance in Rhodesia: A study of the evolution of the monetary system during the Unilateral Declaration of Independence (UDI), 1965–1979”.

Under the direction of his primary supervisor, Prof Ian Phimister and his secondary supervisor, Dr Andrew Cohen, four of his papers have been accepted for publication. Nyamunda also received sponsorship from the Rector’s Office for an edited book collection of which he is the leading author. The book focuses on the many aspects of Zimbabwe’s blood diamonds.

Recently, Nyamunda has contributed papers at conferences in Botswana and Scotland and attended a workshop at Lund University in Sweden. He has also received an invitation from Germany and Oxford to present some chapters of his PhD thesis.

“The centre has provided the best working environment any PhD student can dream of,” Nyamunda said. He continued to remark that the opportunities Prof Jonathan Jansen has created opened up immense possibilities for them.

“Given these fruitful experiences in just a year at the university,” Nyamunda said,” imagine what can be accomplished given the resources and environment availed by the institution.” The prospects after his PhD studies looks bright, he concluded, because of the opportunities provided by the UFS.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept