Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story University of the Free State | Photo Supplied
Dr Hossein Naghizadeh and Refilwe Lediga
Collaborative innovation in action: Researchers from the University of the Free State’s Green Concrete Lab have partnered with the University of Johannesburg to advance 3D printing technologies using sustainable concrete materials. Pictured (from left): Dr Hossein Naghizadeh, Senior Lecturer in Engineering Sciences at UFS, and Refilwe Lediga, Concrete Printing Research Expert in the Department of Civil Engineering Technology at UJ.

In an ambitious and interdisciplinary effort to address today’s Grand Challenges, researchers at the University of the Free State (UFS) are exploring how nature’s oldest life forms – stromatolites – can inspire cutting-edge innovations in industrial ecology and marine conservation.  Drawing from biomimicry, 3D printing, and microbial engineering, their work showcases the convergence of ecological insight with modern technology. 

“One such example is replicating the structures of stromatolites – some of the earliest evidence of life - using green cement and 3D printing, the latest technology in industrial ecology,” explains Dr Jacques Maritz, Head of the Unit of Engineering Sciences at UFS. 

 

Ancient structures, modern science  

Stromatolites are layered microbial formations created by ancient cyanobacteria and date back over 3.5 billion years. These living fossils, found in fossil records and rare modern environments like Shark Bay in Australia, grow through a combination of photosynthesis, sediment trapping, and calcium carbonate precipitation. Not only do they support biodiversity, but they also play a vital role in natural carbon sequestration. 

UFS researchers are harnessing the lessons from these ancient formations to address urgent environmental challenges. In particular, Dr Yolandi Schoeman, Senior Lecturer at the Centre for Biogeochemistry, is leading efforts to cultivate hybrid stromatolites in controlled environments, using microbial consortia grown on 3D-printed scaffolds.  

“At UFS, we are reimagining stromatolite formation through both artificial structural replication and biological cultivation, bridging industrial ecology and microbial engineering to address modern environmental challenges,” says Dr Schoeman. 

 

Ecological engineering for reef restoration 

The rapid decline of marine biodiversity and the degradation of natural reef ecosystems have prompted ecological engineers to develop innovative solutions. At the UFS Green Concrete Lab, researchers are pioneering the design of artificial reefs using 3D-printed, low-carbon geopolymer concrete – a material formulated from industrial by-products such as fly ash and slag. 

Artificial reefs mimic natural reef complexity and serve as critical habitats for marine life, from fish and crustaceans to coral polyps and algae. Algae, in particular, are key to marine ecosystems due to their roles in nutrient cycling, oxygen production, and carbon capture. 

“Green concrete refers to concrete that utilises alternative binders and industrial by-products, significantly reducing the environmental footprint. At UFS, we are focusing on geopolymer concrete, which eliminates the high-energy processes associated with Portland cement, while offering greater chemical resistance - ideal for marine applications,” explains Dr Abdolhossein Naghizadeh from the Unit of Engineering Sciences. 

 

3D printing nature’s complexity 

One of the challenges in artificial reef development is replicating biologically inspired geometries that support diverse marine ecosystems. Traditional construction methods often fail in this regard, but additive manufacturing, or 3D concrete printing, is providing a solution.  

The UFS Green Concrete Lab, in collaboration with the University of Johannesburg, is developing reef modules with intricate geometries and natural surface textures. These features support coral and algae attachment, accelerate ecological colonisation, and enhance habitat functionality. Biochar-based compost filters are also being integrated to aid algae-driven wastewater treatment. 

A particularly novel avenue of research involves using 3D printing to recreate stromatolite structures. These serve as ancient blueprints for modern reef design, merging deep-time ecological understanding with advanced material science. 

 

Biologically engineered hybrid stromatolites  

In parallel to structural efforts, UFS is advancing biological approaches to stromatolite cultivation. From July 2025, researchers in the Unit of Engineering Sciences will initiate a large-scale experiment using microbial consortia in 60-litre tanks, scaling up to 1 m² hypersaline ponds. 3D-printed conical scaffolds, coated with materials such as PP-CaCO₃, hydroxyapatite, and silica gel, will accelerate microbial colonisation and lamination. 

The goal: to achieve stromatolite growth of 14-16 mm in just 28 days - over 150 times faster than in nature. These hybrid systems are expected to produce 7-8 mg/L/day of oxygen, sequester carbon at 3.2 g/m²/day, and remove up to 90% of nitrates and phosphates from water. The potential applications extend from terrestrial ecosystem restoration to extraterrestrial life-support systems. 

 

A multidisciplinary vision for sustainability 

This work exemplifies the strength of interdisciplinary research at UFS, combining civil engineering, mechatronics, marine ecology, chemistry, microbiology, and digital fabrication. The Ecological Engineering Sciences stream fosters a vibrant environment for postgraduate students to develop practical, impactful solutions.  

The Green Concrete Lab is central to these efforts, offering students and researchers access to advanced technologies and collaborative networks. Through their innovative work in 3D-printed green concrete and microbial systems, UFS researchers are addressing biodiversity loss, advancing sustainable construction, and contributing to the global climate agenda. 

“Whether it's rethinking materials, restoring ecosystems, or redefining what concrete can be, our research is laying the foundation for a better, more sustainable world beneath the waves,” concludes Dr Maritz. 

News Archive

SA-YSSP scholars attend high level colloquium with policy makers and research stakeholders
2014-02-12

From the left are: Prof Frans Swanepoel, Deputy-Director of the African Doctoral Academy, Drs Aldo Stroebel, Executive Director: International Relations and Cooperation at the National Research Foundation, Priscilla Mensah, co-director of the SA-YSSP, and Ulf Dieckmann from the International Institute for Applied Systems Analysis and Dean of the SA-YSSP.
Photo: Renè-Jean van den Berg

Scholars taking part in the 2nd Southern African Young Scientists Summer Programme (SA-YSSP), attended a one-week seminar hosted by the African Doctoral Academy at the Stellenbosch University, which concluded with a colloquium at the Stellenbosch Institute for Advanced Study.

This was part of the final leg of their three-month stay and studies at the University of the Free State.

This seminar was a capacity development intervention with the purpose of equipping SA-YSSP young scholars with the skills to communicate their research work effectively with different audiences.

The 36 scholars were hand-picked from some of the world’s most promising and top researchers to take part in the novel three-month programme for advanced doctoral candidates. Their research interests closely aligned with the Department of Science and Technology’s (DST) grand challenges and the International Institute for Applied Systems Analysis’ (IIASA) current research programmes regarding global environmental, economic and social change.

The SA-YSSP is an initiative that contributes to the establishment, growth and enhancement of high-level strategic networks internationally. At the same time it develops capacity in systems analysis at the PhD and supervisory levels through research conducted in the areas of the Department of Science and Technology’s (DST) grand challenges.

At the colloquium, students were expected to showcase their work and research according to their various fields of expertise. High-profile policy makers and policy funders, as well as academia and fellow researchers judged and critiqued the work.

Dr Priscilla Mensah from the UFS and co-director of the programme, says it is important for the young scientists to frame their findings in a way that will be relevant to policy makers and the public at large.

“The partnership with the African Doctoral Academy was crucial in this regard since it is a capacity development entity aimed at strengthening and advancing doctoral education, training and scholarship on the African continent. The objective of this week-long capacity strengthening intervention is to equip the young scientists to be able to communicate their research effectively with different audiences, including potential funders and policy makers.

“I am convinced that the young scientists will no longer view policy makers as abstract entities, but as stakeholders who must be engaged to facilitate implementation of evidence-based policy.”

Dr Aldo Stroebel, Executive Director: International Relations and Cooperation, National Research Foundation, says the purpose of the colloquium is to bring together different sectors in one room to look at different challenges holistically, with an emphasis on systems analysis for a common goal.

The SA-YSSP forms part of an annual three-month education, academic training and research capacity-building programme jointly organised by IIASA, based in Austria, the National Research Foundation (NRF) and the DST. IIASA is an international research organisation that conducts policy-oriented scientific research in the three global problem areas of energy and climate change, food and water, and poverty and equity. South Africa’s engagements with IIASA, specifically with regard to the SA-YSSP, relate primarily to the DST’s Ten-Year Innovation Plan.

The UFS is the first institution outside Austria to host the summer programme. Researchers in the programme are, among others, from South Africa and the rest of the African continent, the USA, the Netherlands, India, Hungary, Austria and Germany.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept