Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story University of the Free State | Photo Supplied
Dr Hossein Naghizadeh and Refilwe Lediga
Collaborative innovation in action: Researchers from the University of the Free State’s Green Concrete Lab have partnered with the University of Johannesburg to advance 3D printing technologies using sustainable concrete materials. Pictured (from left): Dr Hossein Naghizadeh, Senior Lecturer in Engineering Sciences at UFS, and Refilwe Lediga, Concrete Printing Research Expert in the Department of Civil Engineering Technology at UJ.

In an ambitious and interdisciplinary effort to address today’s Grand Challenges, researchers at the University of the Free State (UFS) are exploring how nature’s oldest life forms – stromatolites – can inspire cutting-edge innovations in industrial ecology and marine conservation.  Drawing from biomimicry, 3D printing, and microbial engineering, their work showcases the convergence of ecological insight with modern technology. 

“One such example is replicating the structures of stromatolites – some of the earliest evidence of life - using green cement and 3D printing, the latest technology in industrial ecology,” explains Dr Jacques Maritz, Head of the Unit of Engineering Sciences at UFS. 

 

Ancient structures, modern science  

Stromatolites are layered microbial formations created by ancient cyanobacteria and date back over 3.5 billion years. These living fossils, found in fossil records and rare modern environments like Shark Bay in Australia, grow through a combination of photosynthesis, sediment trapping, and calcium carbonate precipitation. Not only do they support biodiversity, but they also play a vital role in natural carbon sequestration. 

UFS researchers are harnessing the lessons from these ancient formations to address urgent environmental challenges. In particular, Dr Yolandi Schoeman, Senior Lecturer at the Centre for Biogeochemistry, is leading efforts to cultivate hybrid stromatolites in controlled environments, using microbial consortia grown on 3D-printed scaffolds.  

“At UFS, we are reimagining stromatolite formation through both artificial structural replication and biological cultivation, bridging industrial ecology and microbial engineering to address modern environmental challenges,” says Dr Schoeman. 

 

Ecological engineering for reef restoration 

The rapid decline of marine biodiversity and the degradation of natural reef ecosystems have prompted ecological engineers to develop innovative solutions. At the UFS Green Concrete Lab, researchers are pioneering the design of artificial reefs using 3D-printed, low-carbon geopolymer concrete – a material formulated from industrial by-products such as fly ash and slag. 

Artificial reefs mimic natural reef complexity and serve as critical habitats for marine life, from fish and crustaceans to coral polyps and algae. Algae, in particular, are key to marine ecosystems due to their roles in nutrient cycling, oxygen production, and carbon capture. 

“Green concrete refers to concrete that utilises alternative binders and industrial by-products, significantly reducing the environmental footprint. At UFS, we are focusing on geopolymer concrete, which eliminates the high-energy processes associated with Portland cement, while offering greater chemical resistance - ideal for marine applications,” explains Dr Abdolhossein Naghizadeh from the Unit of Engineering Sciences. 

 

3D printing nature’s complexity 

One of the challenges in artificial reef development is replicating biologically inspired geometries that support diverse marine ecosystems. Traditional construction methods often fail in this regard, but additive manufacturing, or 3D concrete printing, is providing a solution.  

The UFS Green Concrete Lab, in collaboration with the University of Johannesburg, is developing reef modules with intricate geometries and natural surface textures. These features support coral and algae attachment, accelerate ecological colonisation, and enhance habitat functionality. Biochar-based compost filters are also being integrated to aid algae-driven wastewater treatment. 

A particularly novel avenue of research involves using 3D printing to recreate stromatolite structures. These serve as ancient blueprints for modern reef design, merging deep-time ecological understanding with advanced material science. 

 

Biologically engineered hybrid stromatolites  

In parallel to structural efforts, UFS is advancing biological approaches to stromatolite cultivation. From July 2025, researchers in the Unit of Engineering Sciences will initiate a large-scale experiment using microbial consortia in 60-litre tanks, scaling up to 1 m² hypersaline ponds. 3D-printed conical scaffolds, coated with materials such as PP-CaCO₃, hydroxyapatite, and silica gel, will accelerate microbial colonisation and lamination. 

The goal: to achieve stromatolite growth of 14-16 mm in just 28 days - over 150 times faster than in nature. These hybrid systems are expected to produce 7-8 mg/L/day of oxygen, sequester carbon at 3.2 g/m²/day, and remove up to 90% of nitrates and phosphates from water. The potential applications extend from terrestrial ecosystem restoration to extraterrestrial life-support systems. 

 

A multidisciplinary vision for sustainability 

This work exemplifies the strength of interdisciplinary research at UFS, combining civil engineering, mechatronics, marine ecology, chemistry, microbiology, and digital fabrication. The Ecological Engineering Sciences stream fosters a vibrant environment for postgraduate students to develop practical, impactful solutions.  

The Green Concrete Lab is central to these efforts, offering students and researchers access to advanced technologies and collaborative networks. Through their innovative work in 3D-printed green concrete and microbial systems, UFS researchers are addressing biodiversity loss, advancing sustainable construction, and contributing to the global climate agenda. 

“Whether it's rethinking materials, restoring ecosystems, or redefining what concrete can be, our research is laying the foundation for a better, more sustainable world beneath the waves,” concludes Dr Maritz. 

News Archive

“To forgive is not an obligation. It’s a choice.” – Prof Minow during Reconciliation Lecture
2014-03-05

“To forgive is not an obligation. It’s a choice.” – Prof Minow during the Third Annual Reconciliation Lecture entitled Forgiveness, Law and Justice.
Photo: Johan Roux

No one could have anticipated the atmosphere in which Prof Martha Minow would visit the Bloemfontein Campus. And no one could have predicted how apt the timing of her message would be. As this formidable Dean of Harvard University’s Law School stepped behind the podium, a latent tension edged through the crowded audience.

“The issue of getting along after conflict is urgent.”

With these few words, Prof Minow exposed the essence of not only her lecture, but also the central concern of the entire university community.

As an expert on issues surrounding racial justice, Prof Minow has worked across the globe in post-conflict societies. How can we prevent atrocities from happening? she asked. Her answer was an honest, “I don’t know.” What she is certain of, on the other hand, is that the usual practice of either silence or retribution does not work. “I think that silence produces rage – understandably – and retribution produces the cycle of violence. Rather than ignoring what happens, rather than retribution, it would be good to reach for something more.” This is where reconciliation comes in.

Prof Minow put forward the idea that forgiveness should accompany reconciliation efforts. She defined forgiveness as a conscious, deliberate decision to forego rightful grounds of resentment towards those who have committed a wrong. “To forgive then, in this definition, is not an obligation. It’s a choice. And it’s held by the one who was harmed,” she explained.

Letting go of resentment cannot be forced – not even by the law. What the law can do, though, is either to encourage or discourage forgiveness. Prof Minow showed how the law can construct adversarial processes that render forgiveness less likely, when indeed its intention was the opposite. “Or, law can give people chances to meet together in spaces where they may apologise and they may forgive,” she continued. This point introduced some surprising revelations about our Truth and Reconciliation Commission (TRC).

Indeed, studies do report ambivalence, disappointment and mixed views about the TRC. Whatever our views are on its success, Prof Minow reported that people across the world wonder how South African did it. “It may not work entirely inside the country; outside the country it’s had a huge effect. It’s a touchstone for transitional justice.”

The TRC “seems to have coincided with, and maybe contributed to, the relatively peaceful political transition to democracy that is, frankly, an absolute miracle.” What came as a surprise to many is this: the fact that the TRC has affected transitional justice efforts in forty jurisdictions, including Rwanda, Sierra Leone, Cambodia and Liberia. It has even inspired the creation of a TRC in Greensborough, North Carolina, in the United States.

There are no blueprints for solving conflict, though. “But the possibility of something other than criminal trials, something other than war, something other than silence – that’s why the TRC, I think, has been such an exemplar to the world,” she commended.

Court decision cannot rebuild a society, though. Only individuals can forgive. Only individuals can start with purposeful, daily decisions to forgive and forge a common future. Forgiveness is rather like kindness, she suggested. It’s a resource without limits. It’s not scarce like water or money. It’s within our reach. But if it’s forced, it’s not forgiveness.

“It is good,” Prof Minow warned, “to be cautious about the use of law to deliberately shape or manipulate the feelings of any individual. But it is no less important to admit that law does affect human beings, not just in its results, but in its process.” And then we must take responsibility for how we use that law.

“A government can judge, but only people can forgive.” As Prof Minow’s words lingered, the air suddenly seemed a bit more buoyant.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept