Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story University of the Free State | Photo Supplied
Dr Hossein Naghizadeh and Refilwe Lediga
Collaborative innovation in action: Researchers from the University of the Free State’s Green Concrete Lab have partnered with the University of Johannesburg to advance 3D printing technologies using sustainable concrete materials. Pictured (from left): Dr Hossein Naghizadeh, Senior Lecturer in Engineering Sciences at UFS, and Refilwe Lediga, Concrete Printing Research Expert in the Department of Civil Engineering Technology at UJ.

In an ambitious and interdisciplinary effort to address today’s Grand Challenges, researchers at the University of the Free State (UFS) are exploring how nature’s oldest life forms – stromatolites – can inspire cutting-edge innovations in industrial ecology and marine conservation.  Drawing from biomimicry, 3D printing, and microbial engineering, their work showcases the convergence of ecological insight with modern technology. 

“One such example is replicating the structures of stromatolites – some of the earliest evidence of life - using green cement and 3D printing, the latest technology in industrial ecology,” explains Dr Jacques Maritz, Head of the Unit of Engineering Sciences at UFS. 

 

Ancient structures, modern science  

Stromatolites are layered microbial formations created by ancient cyanobacteria and date back over 3.5 billion years. These living fossils, found in fossil records and rare modern environments like Shark Bay in Australia, grow through a combination of photosynthesis, sediment trapping, and calcium carbonate precipitation. Not only do they support biodiversity, but they also play a vital role in natural carbon sequestration. 

UFS researchers are harnessing the lessons from these ancient formations to address urgent environmental challenges. In particular, Dr Yolandi Schoeman, Senior Lecturer at the Centre for Biogeochemistry, is leading efforts to cultivate hybrid stromatolites in controlled environments, using microbial consortia grown on 3D-printed scaffolds.  

“At UFS, we are reimagining stromatolite formation through both artificial structural replication and biological cultivation, bridging industrial ecology and microbial engineering to address modern environmental challenges,” says Dr Schoeman. 

 

Ecological engineering for reef restoration 

The rapid decline of marine biodiversity and the degradation of natural reef ecosystems have prompted ecological engineers to develop innovative solutions. At the UFS Green Concrete Lab, researchers are pioneering the design of artificial reefs using 3D-printed, low-carbon geopolymer concrete – a material formulated from industrial by-products such as fly ash and slag. 

Artificial reefs mimic natural reef complexity and serve as critical habitats for marine life, from fish and crustaceans to coral polyps and algae. Algae, in particular, are key to marine ecosystems due to their roles in nutrient cycling, oxygen production, and carbon capture. 

“Green concrete refers to concrete that utilises alternative binders and industrial by-products, significantly reducing the environmental footprint. At UFS, we are focusing on geopolymer concrete, which eliminates the high-energy processes associated with Portland cement, while offering greater chemical resistance - ideal for marine applications,” explains Dr Abdolhossein Naghizadeh from the Unit of Engineering Sciences. 

 

3D printing nature’s complexity 

One of the challenges in artificial reef development is replicating biologically inspired geometries that support diverse marine ecosystems. Traditional construction methods often fail in this regard, but additive manufacturing, or 3D concrete printing, is providing a solution.  

The UFS Green Concrete Lab, in collaboration with the University of Johannesburg, is developing reef modules with intricate geometries and natural surface textures. These features support coral and algae attachment, accelerate ecological colonisation, and enhance habitat functionality. Biochar-based compost filters are also being integrated to aid algae-driven wastewater treatment. 

A particularly novel avenue of research involves using 3D printing to recreate stromatolite structures. These serve as ancient blueprints for modern reef design, merging deep-time ecological understanding with advanced material science. 

 

Biologically engineered hybrid stromatolites  

In parallel to structural efforts, UFS is advancing biological approaches to stromatolite cultivation. From July 2025, researchers in the Unit of Engineering Sciences will initiate a large-scale experiment using microbial consortia in 60-litre tanks, scaling up to 1 m² hypersaline ponds. 3D-printed conical scaffolds, coated with materials such as PP-CaCO₃, hydroxyapatite, and silica gel, will accelerate microbial colonisation and lamination. 

The goal: to achieve stromatolite growth of 14-16 mm in just 28 days - over 150 times faster than in nature. These hybrid systems are expected to produce 7-8 mg/L/day of oxygen, sequester carbon at 3.2 g/m²/day, and remove up to 90% of nitrates and phosphates from water. The potential applications extend from terrestrial ecosystem restoration to extraterrestrial life-support systems. 

 

A multidisciplinary vision for sustainability 

This work exemplifies the strength of interdisciplinary research at UFS, combining civil engineering, mechatronics, marine ecology, chemistry, microbiology, and digital fabrication. The Ecological Engineering Sciences stream fosters a vibrant environment for postgraduate students to develop practical, impactful solutions.  

The Green Concrete Lab is central to these efforts, offering students and researchers access to advanced technologies and collaborative networks. Through their innovative work in 3D-printed green concrete and microbial systems, UFS researchers are addressing biodiversity loss, advancing sustainable construction, and contributing to the global climate agenda. 

“Whether it's rethinking materials, restoring ecosystems, or redefining what concrete can be, our research is laying the foundation for a better, more sustainable world beneath the waves,” concludes Dr Maritz. 

News Archive

University gets support to improve student success
2014-11-26

From the left are: Prof Francois Strydom (Director: Academic - Centre for Teaching and Learning at the UFS), Mr Rip Rapson (Chief Executive Officer, Kresge Foundation), Dr Marcus Ingram (UFS Director for Institutional Advancement) and Mr Bill Moses (Programme Director for the Kresge Foundation's Education Programme).
Photo: Hannes Pieterse

The Kresge Foundation has awarded $400 000 (about R4 million) to the University of the Free State (UFS) to increase student success through improved data analysis.

This four-year grant, as part of Kresge’s Siyaphumelela initiative, was recently announced by Mr Rip Rapson, Kresge’s President and Chief Executive Officer. This announcement was made at a symposium on South African higher education and philanthropy in Cape Town.

“Universities across South Africa are grappling with how to improve persistence and graduation rates for their black students in particular,” Mr Rapson said. “These universities will work together with the South African Institute for Distance Education to develop their data analytics capacity to find and share solutions and interventions based on solid information to improve student success.”

The UFS was only one of four universities receiving funding from Kresge. The other universities include the Nelson Mandela metropolitan University in Port Elizabeth, the University of the Witwatersrand in Johannesburg and the University of Pretoria.

The grants will help the universities build their capacities to use data to better integrate institutional research, information communication technology, academic development, student services and academic departments. Beyond the improvements sought for the UFS, Kresge hopes to see new approaches to data become mainstream for higher education in South Africa.

The Siyaphumelela initiative provides four years of institutional support and hope to create a community of practice that learns lessons that may benefit not only individual institutions and the cohort, but also potentially all of South African higher education.

Dr Lis Lange, Vice-Rector: Academic at the UFS, said improving student successes is a university goal that operates in the interface between the Human and Academic Projects of the university.

“We are delighted to be part of an initiative that is going to help us develop greater capability for data analytics and deeper integration between data and teaching and learning practices; and, at the same time, will bring the Centre for Teaching and Learning, the Directorate for Institutional Research and Academic Planning (DIRAP) and the faculties into a closer cooperation.”

Over the past four years donor income to the UFS increased considerably, both from governmental sources, trusts and foundations. By the end of 2013, governmental funding increased from about R5 million in 2011 to over R35 million. Funding by trusts and foundations increased from R5 million in 2011 to over R15 million in 2013. A general increase of 25% in funding is expected for 2014.

Dr Marcus Ingram, UFS Director for Institutional Advancement, says as the UFS begins to settle into a refined academic identity, the Department for Institutional Advancement intends to support these efforts by helping to facilitate the telling of a more integrated narrative to the university’s friends, prospects and donors.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept