Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story University of the Free State | Photo Supplied
Dr Hossein Naghizadeh and Refilwe Lediga
Collaborative innovation in action: Researchers from the University of the Free State’s Green Concrete Lab have partnered with the University of Johannesburg to advance 3D printing technologies using sustainable concrete materials. Pictured (from left): Dr Hossein Naghizadeh, Senior Lecturer in Engineering Sciences at UFS, and Refilwe Lediga, Concrete Printing Research Expert in the Department of Civil Engineering Technology at UJ.

In an ambitious and interdisciplinary effort to address today’s Grand Challenges, researchers at the University of the Free State (UFS) are exploring how nature’s oldest life forms – stromatolites – can inspire cutting-edge innovations in industrial ecology and marine conservation.  Drawing from biomimicry, 3D printing, and microbial engineering, their work showcases the convergence of ecological insight with modern technology. 

“One such example is replicating the structures of stromatolites – some of the earliest evidence of life - using green cement and 3D printing, the latest technology in industrial ecology,” explains Dr Jacques Maritz, Head of the Unit of Engineering Sciences at UFS. 

 

Ancient structures, modern science  

Stromatolites are layered microbial formations created by ancient cyanobacteria and date back over 3.5 billion years. These living fossils, found in fossil records and rare modern environments like Shark Bay in Australia, grow through a combination of photosynthesis, sediment trapping, and calcium carbonate precipitation. Not only do they support biodiversity, but they also play a vital role in natural carbon sequestration. 

UFS researchers are harnessing the lessons from these ancient formations to address urgent environmental challenges. In particular, Dr Yolandi Schoeman, Senior Lecturer at the Centre for Biogeochemistry, is leading efforts to cultivate hybrid stromatolites in controlled environments, using microbial consortia grown on 3D-printed scaffolds.  

“At UFS, we are reimagining stromatolite formation through both artificial structural replication and biological cultivation, bridging industrial ecology and microbial engineering to address modern environmental challenges,” says Dr Schoeman. 

 

Ecological engineering for reef restoration 

The rapid decline of marine biodiversity and the degradation of natural reef ecosystems have prompted ecological engineers to develop innovative solutions. At the UFS Green Concrete Lab, researchers are pioneering the design of artificial reefs using 3D-printed, low-carbon geopolymer concrete – a material formulated from industrial by-products such as fly ash and slag. 

Artificial reefs mimic natural reef complexity and serve as critical habitats for marine life, from fish and crustaceans to coral polyps and algae. Algae, in particular, are key to marine ecosystems due to their roles in nutrient cycling, oxygen production, and carbon capture. 

“Green concrete refers to concrete that utilises alternative binders and industrial by-products, significantly reducing the environmental footprint. At UFS, we are focusing on geopolymer concrete, which eliminates the high-energy processes associated with Portland cement, while offering greater chemical resistance - ideal for marine applications,” explains Dr Abdolhossein Naghizadeh from the Unit of Engineering Sciences. 

 

3D printing nature’s complexity 

One of the challenges in artificial reef development is replicating biologically inspired geometries that support diverse marine ecosystems. Traditional construction methods often fail in this regard, but additive manufacturing, or 3D concrete printing, is providing a solution.  

The UFS Green Concrete Lab, in collaboration with the University of Johannesburg, is developing reef modules with intricate geometries and natural surface textures. These features support coral and algae attachment, accelerate ecological colonisation, and enhance habitat functionality. Biochar-based compost filters are also being integrated to aid algae-driven wastewater treatment. 

A particularly novel avenue of research involves using 3D printing to recreate stromatolite structures. These serve as ancient blueprints for modern reef design, merging deep-time ecological understanding with advanced material science. 

 

Biologically engineered hybrid stromatolites  

In parallel to structural efforts, UFS is advancing biological approaches to stromatolite cultivation. From July 2025, researchers in the Unit of Engineering Sciences will initiate a large-scale experiment using microbial consortia in 60-litre tanks, scaling up to 1 m² hypersaline ponds. 3D-printed conical scaffolds, coated with materials such as PP-CaCO₃, hydroxyapatite, and silica gel, will accelerate microbial colonisation and lamination. 

The goal: to achieve stromatolite growth of 14-16 mm in just 28 days - over 150 times faster than in nature. These hybrid systems are expected to produce 7-8 mg/L/day of oxygen, sequester carbon at 3.2 g/m²/day, and remove up to 90% of nitrates and phosphates from water. The potential applications extend from terrestrial ecosystem restoration to extraterrestrial life-support systems. 

 

A multidisciplinary vision for sustainability 

This work exemplifies the strength of interdisciplinary research at UFS, combining civil engineering, mechatronics, marine ecology, chemistry, microbiology, and digital fabrication. The Ecological Engineering Sciences stream fosters a vibrant environment for postgraduate students to develop practical, impactful solutions.  

The Green Concrete Lab is central to these efforts, offering students and researchers access to advanced technologies and collaborative networks. Through their innovative work in 3D-printed green concrete and microbial systems, UFS researchers are addressing biodiversity loss, advancing sustainable construction, and contributing to the global climate agenda. 

“Whether it's rethinking materials, restoring ecosystems, or redefining what concrete can be, our research is laying the foundation for a better, more sustainable world beneath the waves,” concludes Dr Maritz. 

News Archive

UFS law experts publish unique translation
2006-06-21

Attending the launch of the publication were from the left:  Prof Boelie Wessels (senior lecturer at the UFS Faculty of Law), Prof Frederick Fourie (Rector and Vice-Chancellor of the UFS), Prof Johan Henning (Dean: UFS Faculty of Law) and Adv Jaco de Bruin (senior lecturer at the UFS Faculty of Law). Prof Wessels translated the treatise from corrupted medieval lawyer Latin into English, Prof Henning is the leading author and initiator of the publication and Adv de Bruin assisted with the proofreading and editing. Photo: Stephen Collett

UFS law experts publish unique translation of neglected source of partnership law

The Centre for Business Law at the University of the Free State (UFS) has translated a unique long neglected Roman-Dutch source of the law of partnership law from Latin into English.  This source dates back to 1666. 

The book, called Tractatus de Societate (A Treatise on the Law of Partnership), by Felicius and Boxelius is published as Volume 40 in the research series Mededelings van die Sentrum vir Ondernemingsreg/Transactions of the Centre for Business Law.  It is the first translation of this Roman-Dutch source into English and comprises of a comprehensive discussion of the South African common law of partnerships.  

“Apart from various brief provisions dealing on a peace meal and an ad hoc basis with diverse matters such as insolvency, there is no comprehensive Partnership Act in South Africa.  The law of partnership in South Africa consists of South African common-law, which is mainly derived from Roman-Dutch law,” said Prof Johan Henning, Dean of the Faculty of Law at the UFS.  Prof Henning is also the leading author and initiator of this comprehensive publication.

“Countries such as America, England, Ireland and The Netherlands have drafted or are in the process of establishing new modern partnership laws in line with new international guidelines, practices and commercial usages,” said Prof Henning.

“However, in South Africa the most recent policy document released by the Department of Trade and Industry explicitly excludes partnership law from its present company law reform programme and clearly regards this as an issue for another day,” said Prof Henning.

“Unless there is a political will to allocate the necessary resources to a comprehensive partnership law revision program, it is a practical reality that South Africa will not have a modern Partnership Act in the foreseeable future,” said Prof Henning. 

According to Prof Henning South African courts have been using the Roman-Dutch partnership law sources as authority.  “The English Partnership Act of 1890 is not binding and the English text books should therefore be approached with caution,” said Prof Henning.

“A treatise on the law of partnership that has been regarded by South African courts as an important common law authority is that of  a Frenchman by the name of Pothier.  This treatise was translated into English and was regarded as an au­thority of significance in The Netherlands towards the end of the eighteenth century,” said Prof Henning. 

“Pothier’s opinions are however not valid throughout in the Roman-Dutch partnership law as it did not apply to the Dutch province of The Netherlands and it sometimes also rely on local French customs for authority,” said Prof Henning.

For this reason the Centre for Business Law at the UFS decided to focus its attention again on the significance of the comprehensive treatise of Felicius and Boxelius on the Roman-Dutch partnership law.  Felicius was an Italian lawyer and Boxelius a Dutch lawyer.

This long neglected source of partnership law was published in 1666 in Gorkum in The Netherlands.  "A significant amount of Roman-Dutch sources of authoritive writers trusted this treatise and referred to it,” said Prof Henning.

The translation of the treatise from corrupted medieval lawyer Latin into English  was done by Prof Boelie Wessels, a very well-known expert on Roman Law and senior lecturer at the UFS Faculty of Law.  Prof Wessels, who  has 15 degrees, spent almost ten years translating the treatise.  The proofreading and editing of the translation was done by Prof Henning and Adv Jaco de Bruin, a senior lecturer at the UFS Faculty of Law.

“We want the South African courts to use Volume 40 in the research series Mededelings van die Sentrum vir Ondernemingsreg/Transactions of the Centre for Business Law as the primary source of reference when cases where Roman-Dutch Law partnership law principles are involved, are ruled on,” said Prof Henning.

The first part of the publication comprises of selected perspectives on the historical significance of the work as well as a translation of selected passages. “The intention is to follow this up expeditiously with the publication of a very limited edition of a complete translation of the work,” said Prof Henning.

A total of 400 copies of the publication will be distributed to all courts, the Appeal Court and the Supreme Court.

Media release
Issued by: Lacea Loader
Media Representative
Tel:   (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
21 June 2006

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept