Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story University of the Free State | Photo Supplied
Dr Hossein Naghizadeh and Refilwe Lediga
Collaborative innovation in action: Researchers from the University of the Free State’s Green Concrete Lab have partnered with the University of Johannesburg to advance 3D printing technologies using sustainable concrete materials. Pictured (from left): Dr Hossein Naghizadeh, Senior Lecturer in Engineering Sciences at UFS, and Refilwe Lediga, Concrete Printing Research Expert in the Department of Civil Engineering Technology at UJ.

In an ambitious and interdisciplinary effort to address today’s Grand Challenges, researchers at the University of the Free State (UFS) are exploring how nature’s oldest life forms – stromatolites – can inspire cutting-edge innovations in industrial ecology and marine conservation.  Drawing from biomimicry, 3D printing, and microbial engineering, their work showcases the convergence of ecological insight with modern technology. 

“One such example is replicating the structures of stromatolites – some of the earliest evidence of life - using green cement and 3D printing, the latest technology in industrial ecology,” explains Dr Jacques Maritz, Head of the Unit of Engineering Sciences at UFS. 

 

Ancient structures, modern science  

Stromatolites are layered microbial formations created by ancient cyanobacteria and date back over 3.5 billion years. These living fossils, found in fossil records and rare modern environments like Shark Bay in Australia, grow through a combination of photosynthesis, sediment trapping, and calcium carbonate precipitation. Not only do they support biodiversity, but they also play a vital role in natural carbon sequestration. 

UFS researchers are harnessing the lessons from these ancient formations to address urgent environmental challenges. In particular, Dr Yolandi Schoeman, Senior Lecturer at the Centre for Biogeochemistry, is leading efforts to cultivate hybrid stromatolites in controlled environments, using microbial consortia grown on 3D-printed scaffolds.  

“At UFS, we are reimagining stromatolite formation through both artificial structural replication and biological cultivation, bridging industrial ecology and microbial engineering to address modern environmental challenges,” says Dr Schoeman. 

 

Ecological engineering for reef restoration 

The rapid decline of marine biodiversity and the degradation of natural reef ecosystems have prompted ecological engineers to develop innovative solutions. At the UFS Green Concrete Lab, researchers are pioneering the design of artificial reefs using 3D-printed, low-carbon geopolymer concrete – a material formulated from industrial by-products such as fly ash and slag. 

Artificial reefs mimic natural reef complexity and serve as critical habitats for marine life, from fish and crustaceans to coral polyps and algae. Algae, in particular, are key to marine ecosystems due to their roles in nutrient cycling, oxygen production, and carbon capture. 

“Green concrete refers to concrete that utilises alternative binders and industrial by-products, significantly reducing the environmental footprint. At UFS, we are focusing on geopolymer concrete, which eliminates the high-energy processes associated with Portland cement, while offering greater chemical resistance - ideal for marine applications,” explains Dr Abdolhossein Naghizadeh from the Unit of Engineering Sciences. 

 

3D printing nature’s complexity 

One of the challenges in artificial reef development is replicating biologically inspired geometries that support diverse marine ecosystems. Traditional construction methods often fail in this regard, but additive manufacturing, or 3D concrete printing, is providing a solution.  

The UFS Green Concrete Lab, in collaboration with the University of Johannesburg, is developing reef modules with intricate geometries and natural surface textures. These features support coral and algae attachment, accelerate ecological colonisation, and enhance habitat functionality. Biochar-based compost filters are also being integrated to aid algae-driven wastewater treatment. 

A particularly novel avenue of research involves using 3D printing to recreate stromatolite structures. These serve as ancient blueprints for modern reef design, merging deep-time ecological understanding with advanced material science. 

 

Biologically engineered hybrid stromatolites  

In parallel to structural efforts, UFS is advancing biological approaches to stromatolite cultivation. From July 2025, researchers in the Unit of Engineering Sciences will initiate a large-scale experiment using microbial consortia in 60-litre tanks, scaling up to 1 m² hypersaline ponds. 3D-printed conical scaffolds, coated with materials such as PP-CaCO₃, hydroxyapatite, and silica gel, will accelerate microbial colonisation and lamination. 

The goal: to achieve stromatolite growth of 14-16 mm in just 28 days - over 150 times faster than in nature. These hybrid systems are expected to produce 7-8 mg/L/day of oxygen, sequester carbon at 3.2 g/m²/day, and remove up to 90% of nitrates and phosphates from water. The potential applications extend from terrestrial ecosystem restoration to extraterrestrial life-support systems. 

 

A multidisciplinary vision for sustainability 

This work exemplifies the strength of interdisciplinary research at UFS, combining civil engineering, mechatronics, marine ecology, chemistry, microbiology, and digital fabrication. The Ecological Engineering Sciences stream fosters a vibrant environment for postgraduate students to develop practical, impactful solutions.  

The Green Concrete Lab is central to these efforts, offering students and researchers access to advanced technologies and collaborative networks. Through their innovative work in 3D-printed green concrete and microbial systems, UFS researchers are addressing biodiversity loss, advancing sustainable construction, and contributing to the global climate agenda. 

“Whether it's rethinking materials, restoring ecosystems, or redefining what concrete can be, our research is laying the foundation for a better, more sustainable world beneath the waves,” concludes Dr Maritz. 

News Archive

UFS research sheds light on service delivery protests in South Africa
2015-01-23

UFS research sheds light on service delivery protests in South Africa

Service delivery protests in the country have peaked during 2014, with 176 major service delivery protests staged against local government across South Africa.

A study by the University of the Free State (UFS) found that many of these protests are led by individuals who previously held key positions within the ANC and prominent community leaders. Many of these protests involved violence, and the destruction had a devastating impact on the communities involved.

This study was done by Dr Sethulego Matebesi, researcher and senior lecturer at the UFS. He focused his research on the dynamics of service delivery protests in South Africa.

Service delivery protests refer to the collective taken by a group of community members which are directed against a local municipality over poor or inadequate provision of basic services, and a wider spectrum of concerns including, for example, housing, infrastructural developments, and corruption.

These protests increased substantially from about 10 in 2004 to 111 in 2010, reaching unprecedented levels with 176 during 2014.

The causes of these protests are divided into three broad categories: systemic (maladministration, fraud, nepotism and corruption); structural (healthcare, poverty, unemployment and land issues); and governance (limited opportunities for civic participation, lack of accountability, weak leadership and the erosion of public confidence in leadership).

In his research, Dr Matebesi observed and studied protests in the Free State, Northern Cape and the North-West since 2008. He found that these protests can be divided into two groups, each with its own characteristics.

“On the one side you have highly fragmented residents’ groups that often use intimidation and violence in predominantly black communities. On the other side, there are highly structured ratepayers’ associations that primarily uses the withholding of municipal rates and taxes in predominantly white communities.”

 

Who are the typical protesters?

Dr Matebesi’s study results show that in most instances, protests in black areas are led by individuals who previously held key positions within the ANC - prominent community leaders. Generally, though, protests are supported by predominantly unemployed, young residents.

“However, judging by election results immediately after protests, the study revealed that the ANC is not losing votes over such actions.”

The study found that in the case of the structured ratepayers’ associations, the groups are led by different segments of the community, including professionals such as attorneys, accountants and even former municipal managers.

Dr Matebesi says that although many protests in black communities often turned out violent, protest leaders stated that they never planned to embark on violent protests.

“They claimed that is was often attitude (towards the protesters), reaction of the police and the lack of government’s interest in their grievances that sparked violence.”

Totally different to this is the form of peaceful protests that involves sanctioning. This requires restraint and coordination, which only a highly structured group can provide.

“The study demonstrates that the effects of service delivery protests have been tangible and visible in South Africa, with almost daily reports of violent confrontations with police, extensive damage to property, looting of businesses, and at times, the injuring or even killing of civilians. With the increase of violence, the space for building trust between the state and civil society is decreasing.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept