Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story University of the Free State | Photo Supplied
Dr Hossein Naghizadeh and Refilwe Lediga
Collaborative innovation in action: Researchers from the University of the Free State’s Green Concrete Lab have partnered with the University of Johannesburg to advance 3D printing technologies using sustainable concrete materials. Pictured (from left): Dr Hossein Naghizadeh, Senior Lecturer in Engineering Sciences at UFS, and Refilwe Lediga, Concrete Printing Research Expert in the Department of Civil Engineering Technology at UJ.

In an ambitious and interdisciplinary effort to address today’s Grand Challenges, researchers at the University of the Free State (UFS) are exploring how nature’s oldest life forms – stromatolites – can inspire cutting-edge innovations in industrial ecology and marine conservation.  Drawing from biomimicry, 3D printing, and microbial engineering, their work showcases the convergence of ecological insight with modern technology. 

“One such example is replicating the structures of stromatolites – some of the earliest evidence of life - using green cement and 3D printing, the latest technology in industrial ecology,” explains Dr Jacques Maritz, Head of the Unit of Engineering Sciences at UFS. 

 

Ancient structures, modern science  

Stromatolites are layered microbial formations created by ancient cyanobacteria and date back over 3.5 billion years. These living fossils, found in fossil records and rare modern environments like Shark Bay in Australia, grow through a combination of photosynthesis, sediment trapping, and calcium carbonate precipitation. Not only do they support biodiversity, but they also play a vital role in natural carbon sequestration. 

UFS researchers are harnessing the lessons from these ancient formations to address urgent environmental challenges. In particular, Dr Yolandi Schoeman, Senior Lecturer at the Centre for Biogeochemistry, is leading efforts to cultivate hybrid stromatolites in controlled environments, using microbial consortia grown on 3D-printed scaffolds.  

“At UFS, we are reimagining stromatolite formation through both artificial structural replication and biological cultivation, bridging industrial ecology and microbial engineering to address modern environmental challenges,” says Dr Schoeman. 

 

Ecological engineering for reef restoration 

The rapid decline of marine biodiversity and the degradation of natural reef ecosystems have prompted ecological engineers to develop innovative solutions. At the UFS Green Concrete Lab, researchers are pioneering the design of artificial reefs using 3D-printed, low-carbon geopolymer concrete – a material formulated from industrial by-products such as fly ash and slag. 

Artificial reefs mimic natural reef complexity and serve as critical habitats for marine life, from fish and crustaceans to coral polyps and algae. Algae, in particular, are key to marine ecosystems due to their roles in nutrient cycling, oxygen production, and carbon capture. 

“Green concrete refers to concrete that utilises alternative binders and industrial by-products, significantly reducing the environmental footprint. At UFS, we are focusing on geopolymer concrete, which eliminates the high-energy processes associated with Portland cement, while offering greater chemical resistance - ideal for marine applications,” explains Dr Abdolhossein Naghizadeh from the Unit of Engineering Sciences. 

 

3D printing nature’s complexity 

One of the challenges in artificial reef development is replicating biologically inspired geometries that support diverse marine ecosystems. Traditional construction methods often fail in this regard, but additive manufacturing, or 3D concrete printing, is providing a solution.  

The UFS Green Concrete Lab, in collaboration with the University of Johannesburg, is developing reef modules with intricate geometries and natural surface textures. These features support coral and algae attachment, accelerate ecological colonisation, and enhance habitat functionality. Biochar-based compost filters are also being integrated to aid algae-driven wastewater treatment. 

A particularly novel avenue of research involves using 3D printing to recreate stromatolite structures. These serve as ancient blueprints for modern reef design, merging deep-time ecological understanding with advanced material science. 

 

Biologically engineered hybrid stromatolites  

In parallel to structural efforts, UFS is advancing biological approaches to stromatolite cultivation. From July 2025, researchers in the Unit of Engineering Sciences will initiate a large-scale experiment using microbial consortia in 60-litre tanks, scaling up to 1 m² hypersaline ponds. 3D-printed conical scaffolds, coated with materials such as PP-CaCO₃, hydroxyapatite, and silica gel, will accelerate microbial colonisation and lamination. 

The goal: to achieve stromatolite growth of 14-16 mm in just 28 days - over 150 times faster than in nature. These hybrid systems are expected to produce 7-8 mg/L/day of oxygen, sequester carbon at 3.2 g/m²/day, and remove up to 90% of nitrates and phosphates from water. The potential applications extend from terrestrial ecosystem restoration to extraterrestrial life-support systems. 

 

A multidisciplinary vision for sustainability 

This work exemplifies the strength of interdisciplinary research at UFS, combining civil engineering, mechatronics, marine ecology, chemistry, microbiology, and digital fabrication. The Ecological Engineering Sciences stream fosters a vibrant environment for postgraduate students to develop practical, impactful solutions.  

The Green Concrete Lab is central to these efforts, offering students and researchers access to advanced technologies and collaborative networks. Through their innovative work in 3D-printed green concrete and microbial systems, UFS researchers are addressing biodiversity loss, advancing sustainable construction, and contributing to the global climate agenda. 

“Whether it's rethinking materials, restoring ecosystems, or redefining what concrete can be, our research is laying the foundation for a better, more sustainable world beneath the waves,” concludes Dr Maritz. 

News Archive

UFS keeps the power on
2015-06-24

 

At a recent Emergency Power Indaba held on the Bloemfontein Campus, support structures at the university met to discuss the Business Continuity Intervention Plan to manage load shedding on the three campuses of the UFS.

Currently, 35 generators serving 55 of the buildings have already been installed as a back-up power supply on the three campuses of the university. According to Anton Calitz, Electrical Engineer at the UFS, the running cost to produce a kWh of electricity with a diesel generator amounts to approximately three times the cost at which the UFS buys electricity from Centlec.

Planned additional generators will attract in excess of R4 million in operating costs per year. For 2015, the UFS senior leadership approved R11 million, spread over the three campuses. Remaining requirements will be spread out over the next three years. University Estates is also looking at renewable energy sources.

On the Bloemfontein Campus, 26 generators serving forty-one buildings are in operation. On South Campus, two generators were installed at the new Education Building and at the ICT Server Room. Lecture halls, the Arena, the Administration Building, and the library will be added later in 2015. Eight generators serving 12 buildings are in operation on the Qwaqwa Campus. In 2015, the Humanities Building, Lecture Halls and the heat pump room will also be equipped with generators.

Most buildings will be supplied only with partial emergency power. In rare cases, entire buildings will be supplied because the cost of connecting is lower than re-wiring for partial demand. According to Nico Janse van Rensburg, Senior Director at University Estates, emergency power will be limited to lighting and power points only. No allowances will be made for air-conditioning.

“Most area lighting will also be connected to emergency power,” he said.

Where spare capacity is available on existing emergency power generators, requests received for additional connections will be added, where possible, within the guidelines. The following spaces will receive preference:
- Lecture halls with the lights, data projectors, and computers running
- Laboratories for practical academic work and sensitive research projects
- Academic research equipment that is sensitive to interruptions
- Buildings hosting regular events

According to Janse van Rensburg, all further needs will be investigated. Staff can forward all emergency power supply needs to Anton Calitz at calitzja@ufs.ac.za

Staff and students can also manage load shedding in the following ways:

1. Carry a small torch with you at all times, in case you are on a stairwell or other dark area when the lights go out. You can also use the flashlight app on your phone. Download it before any load shedding occurs. This can come in handy if the lights go out suddenly, and you cannot find a flashlight. Load-shedding after dark imposes even more pressure on our Campus Security staff. We can assist them with our vigilance and preparedness by carrying portable lights with us at all times and by assisting colleagues.
2. Candles pose a serious safety risk. Rather use battery- or solar-powered lights during load shedding.
3. Ensure that your vehicle always has fuel in the tank, because petrol stations cannot pump fuel during power outages.
4. Ensure that you have enough cash, because ATMs cannot operate without electricity.
5. The UFS Sasol Library has study venues available which students can use during load shedding.
6. When arranging events which are highly dependent on power supply, especially at night, organisers should consult the load-shedding schedule before determining dates and preferably also make back-up arrangements. If generators are a necessity, the financial impact should be taken into consideration.

The senior leadership also approved a list of buildings to be equipped with emergency power supplies.

More about load shedding at the UFS:
Getting out of the dark
More information, guidelines and contact information

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept