Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story University of the Free State | Photo Supplied
Dr Hossein Naghizadeh and Refilwe Lediga
Collaborative innovation in action: Researchers from the University of the Free State’s Green Concrete Lab have partnered with the University of Johannesburg to advance 3D printing technologies using sustainable concrete materials. Pictured (from left): Dr Hossein Naghizadeh, Senior Lecturer in Engineering Sciences at UFS, and Refilwe Lediga, Concrete Printing Research Expert in the Department of Civil Engineering Technology at UJ.

In an ambitious and interdisciplinary effort to address today’s Grand Challenges, researchers at the University of the Free State (UFS) are exploring how nature’s oldest life forms – stromatolites – can inspire cutting-edge innovations in industrial ecology and marine conservation.  Drawing from biomimicry, 3D printing, and microbial engineering, their work showcases the convergence of ecological insight with modern technology. 

“One such example is replicating the structures of stromatolites – some of the earliest evidence of life - using green cement and 3D printing, the latest technology in industrial ecology,” explains Dr Jacques Maritz, Head of the Unit of Engineering Sciences at UFS. 

 

Ancient structures, modern science  

Stromatolites are layered microbial formations created by ancient cyanobacteria and date back over 3.5 billion years. These living fossils, found in fossil records and rare modern environments like Shark Bay in Australia, grow through a combination of photosynthesis, sediment trapping, and calcium carbonate precipitation. Not only do they support biodiversity, but they also play a vital role in natural carbon sequestration. 

UFS researchers are harnessing the lessons from these ancient formations to address urgent environmental challenges. In particular, Dr Yolandi Schoeman, Senior Lecturer at the Centre for Biogeochemistry, is leading efforts to cultivate hybrid stromatolites in controlled environments, using microbial consortia grown on 3D-printed scaffolds.  

“At UFS, we are reimagining stromatolite formation through both artificial structural replication and biological cultivation, bridging industrial ecology and microbial engineering to address modern environmental challenges,” says Dr Schoeman. 

 

Ecological engineering for reef restoration 

The rapid decline of marine biodiversity and the degradation of natural reef ecosystems have prompted ecological engineers to develop innovative solutions. At the UFS Green Concrete Lab, researchers are pioneering the design of artificial reefs using 3D-printed, low-carbon geopolymer concrete – a material formulated from industrial by-products such as fly ash and slag. 

Artificial reefs mimic natural reef complexity and serve as critical habitats for marine life, from fish and crustaceans to coral polyps and algae. Algae, in particular, are key to marine ecosystems due to their roles in nutrient cycling, oxygen production, and carbon capture. 

“Green concrete refers to concrete that utilises alternative binders and industrial by-products, significantly reducing the environmental footprint. At UFS, we are focusing on geopolymer concrete, which eliminates the high-energy processes associated with Portland cement, while offering greater chemical resistance - ideal for marine applications,” explains Dr Abdolhossein Naghizadeh from the Unit of Engineering Sciences. 

 

3D printing nature’s complexity 

One of the challenges in artificial reef development is replicating biologically inspired geometries that support diverse marine ecosystems. Traditional construction methods often fail in this regard, but additive manufacturing, or 3D concrete printing, is providing a solution.  

The UFS Green Concrete Lab, in collaboration with the University of Johannesburg, is developing reef modules with intricate geometries and natural surface textures. These features support coral and algae attachment, accelerate ecological colonisation, and enhance habitat functionality. Biochar-based compost filters are also being integrated to aid algae-driven wastewater treatment. 

A particularly novel avenue of research involves using 3D printing to recreate stromatolite structures. These serve as ancient blueprints for modern reef design, merging deep-time ecological understanding with advanced material science. 

 

Biologically engineered hybrid stromatolites  

In parallel to structural efforts, UFS is advancing biological approaches to stromatolite cultivation. From July 2025, researchers in the Unit of Engineering Sciences will initiate a large-scale experiment using microbial consortia in 60-litre tanks, scaling up to 1 m² hypersaline ponds. 3D-printed conical scaffolds, coated with materials such as PP-CaCO₃, hydroxyapatite, and silica gel, will accelerate microbial colonisation and lamination. 

The goal: to achieve stromatolite growth of 14-16 mm in just 28 days - over 150 times faster than in nature. These hybrid systems are expected to produce 7-8 mg/L/day of oxygen, sequester carbon at 3.2 g/m²/day, and remove up to 90% of nitrates and phosphates from water. The potential applications extend from terrestrial ecosystem restoration to extraterrestrial life-support systems. 

 

A multidisciplinary vision for sustainability 

This work exemplifies the strength of interdisciplinary research at UFS, combining civil engineering, mechatronics, marine ecology, chemistry, microbiology, and digital fabrication. The Ecological Engineering Sciences stream fosters a vibrant environment for postgraduate students to develop practical, impactful solutions.  

The Green Concrete Lab is central to these efforts, offering students and researchers access to advanced technologies and collaborative networks. Through their innovative work in 3D-printed green concrete and microbial systems, UFS researchers are addressing biodiversity loss, advancing sustainable construction, and contributing to the global climate agenda. 

“Whether it's rethinking materials, restoring ecosystems, or redefining what concrete can be, our research is laying the foundation for a better, more sustainable world beneath the waves,” concludes Dr Maritz. 

News Archive

Judge Albie Sachs and Candice Mama discuss traumas of the past and forgiveness in the present
2015-08-05

 

Judge Albie Sachs embraces Candice Mama for her courage in confronting Eugene de Kock, who killed her father.

Two generations. Two stories of triumph. Two South Africans who have displayed immense courage.

Public Dialogue on Trauma, Memory, and Representations of the Past

Judge Albie Sachs and Candice Mama exchanged their experiences of past trauma and subsequent transformation in a public conversation. The event was co-hosted by Prof Pumla Gobodo-Madikizela and The Institute for Justice and Reconciliation (IJR) in Cape Town on Thursday 30 July 2015.

The event was the first instalment in a series entitled Public Dialogue on Trauma, Memory, and Representations of the Past. The theme of the discussion was ‘Intergenerational Dialogue on Trauma and Healing’.

"The aim of these public dialogue events we are co-hosting with IJR is to place the issues of trauma and memory, and the strategies that individuals and communities use to heal, in the public sphere," Prof Gobodo-Madikizela, Senior Research Professor in Trauma, Forgiveness, and Reconciliation Studies at the University of the Free State (UFS) said.

Judge Albie Sachs and Candice Mama in conversation

Former Constitutional Court Judge, Albie Sachs, talked about his participation in South Africa’s liberation struggle, the loss of his right arm in an assassination attempt, and meeting the man responsible – Henri van der Westhuizen. Despite years of exile and extended periods of solitary confinement, Judge Sachs maintains that “we need to acknowledge our history, not be trapped by it.” Judge Sachs also remarked, though, that “we’re seeing too much lamentation, not enough activation.” In a heartrending gesture, Judge Sachs embraced Candice Mama in a hug for her courage in confronting Eugene de Kock, who killed her father.

How poignant then, when Mama said, “I wanted to embrace the brokenness within him,” when she spoke about her meeting with De Kock. By the time I met with Eugene, I could meet him as a human being, not as a villain.” Mama believes that forgiving someone translates into an investment in the person you are forgiving and in your own sanity. She also emphasised the importance of dialogue to move our country forward: “When we share our stories with each other authentically, walls break down.”

This is a stance that Prof Gobodo-Madikizela supports strongly: “When we listen to one another, something unexpected emerges; we encounter the human in each other,” she said. “When we listen with open hearts to each other, we see and experience each other’s humanity.”

Building a bridge between research and society

Referring to the research aspect of the event, Prof Gobodo-Madikizela said that, "in establishing the series of public dialogue events, our vision is to create a bridge between scholarly research and the community at large, on the one hand, and a visual conscience of society, on the other." The UFS is collaborating with the IJR on this research project, which is funded by the Andrew W. Mellon Foundation. The endeavour is led by Prof Gobodo-Madikizela, who also serves as Board Member of the IJR.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept