Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story University of the Free State | Photo Supplied
Dr Hossein Naghizadeh and Refilwe Lediga
Collaborative innovation in action: Researchers from the University of the Free State’s Green Concrete Lab have partnered with the University of Johannesburg to advance 3D printing technologies using sustainable concrete materials. Pictured (from left): Dr Hossein Naghizadeh, Senior Lecturer in Engineering Sciences at UFS, and Refilwe Lediga, Concrete Printing Research Expert in the Department of Civil Engineering Technology at UJ.

In an ambitious and interdisciplinary effort to address today’s Grand Challenges, researchers at the University of the Free State (UFS) are exploring how nature’s oldest life forms – stromatolites – can inspire cutting-edge innovations in industrial ecology and marine conservation.  Drawing from biomimicry, 3D printing, and microbial engineering, their work showcases the convergence of ecological insight with modern technology. 

“One such example is replicating the structures of stromatolites – some of the earliest evidence of life - using green cement and 3D printing, the latest technology in industrial ecology,” explains Dr Jacques Maritz, Head of the Unit of Engineering Sciences at UFS. 

 

Ancient structures, modern science  

Stromatolites are layered microbial formations created by ancient cyanobacteria and date back over 3.5 billion years. These living fossils, found in fossil records and rare modern environments like Shark Bay in Australia, grow through a combination of photosynthesis, sediment trapping, and calcium carbonate precipitation. Not only do they support biodiversity, but they also play a vital role in natural carbon sequestration. 

UFS researchers are harnessing the lessons from these ancient formations to address urgent environmental challenges. In particular, Dr Yolandi Schoeman, Senior Lecturer at the Centre for Biogeochemistry, is leading efforts to cultivate hybrid stromatolites in controlled environments, using microbial consortia grown on 3D-printed scaffolds.  

“At UFS, we are reimagining stromatolite formation through both artificial structural replication and biological cultivation, bridging industrial ecology and microbial engineering to address modern environmental challenges,” says Dr Schoeman. 

 

Ecological engineering for reef restoration 

The rapid decline of marine biodiversity and the degradation of natural reef ecosystems have prompted ecological engineers to develop innovative solutions. At the UFS Green Concrete Lab, researchers are pioneering the design of artificial reefs using 3D-printed, low-carbon geopolymer concrete – a material formulated from industrial by-products such as fly ash and slag. 

Artificial reefs mimic natural reef complexity and serve as critical habitats for marine life, from fish and crustaceans to coral polyps and algae. Algae, in particular, are key to marine ecosystems due to their roles in nutrient cycling, oxygen production, and carbon capture. 

“Green concrete refers to concrete that utilises alternative binders and industrial by-products, significantly reducing the environmental footprint. At UFS, we are focusing on geopolymer concrete, which eliminates the high-energy processes associated with Portland cement, while offering greater chemical resistance - ideal for marine applications,” explains Dr Abdolhossein Naghizadeh from the Unit of Engineering Sciences. 

 

3D printing nature’s complexity 

One of the challenges in artificial reef development is replicating biologically inspired geometries that support diverse marine ecosystems. Traditional construction methods often fail in this regard, but additive manufacturing, or 3D concrete printing, is providing a solution.  

The UFS Green Concrete Lab, in collaboration with the University of Johannesburg, is developing reef modules with intricate geometries and natural surface textures. These features support coral and algae attachment, accelerate ecological colonisation, and enhance habitat functionality. Biochar-based compost filters are also being integrated to aid algae-driven wastewater treatment. 

A particularly novel avenue of research involves using 3D printing to recreate stromatolite structures. These serve as ancient blueprints for modern reef design, merging deep-time ecological understanding with advanced material science. 

 

Biologically engineered hybrid stromatolites  

In parallel to structural efforts, UFS is advancing biological approaches to stromatolite cultivation. From July 2025, researchers in the Unit of Engineering Sciences will initiate a large-scale experiment using microbial consortia in 60-litre tanks, scaling up to 1 m² hypersaline ponds. 3D-printed conical scaffolds, coated with materials such as PP-CaCO₃, hydroxyapatite, and silica gel, will accelerate microbial colonisation and lamination. 

The goal: to achieve stromatolite growth of 14-16 mm in just 28 days - over 150 times faster than in nature. These hybrid systems are expected to produce 7-8 mg/L/day of oxygen, sequester carbon at 3.2 g/m²/day, and remove up to 90% of nitrates and phosphates from water. The potential applications extend from terrestrial ecosystem restoration to extraterrestrial life-support systems. 

 

A multidisciplinary vision for sustainability 

This work exemplifies the strength of interdisciplinary research at UFS, combining civil engineering, mechatronics, marine ecology, chemistry, microbiology, and digital fabrication. The Ecological Engineering Sciences stream fosters a vibrant environment for postgraduate students to develop practical, impactful solutions.  

The Green Concrete Lab is central to these efforts, offering students and researchers access to advanced technologies and collaborative networks. Through their innovative work in 3D-printed green concrete and microbial systems, UFS researchers are addressing biodiversity loss, advancing sustainable construction, and contributing to the global climate agenda. 

“Whether it's rethinking materials, restoring ecosystems, or redefining what concrete can be, our research is laying the foundation for a better, more sustainable world beneath the waves,” concludes Dr Maritz. 

News Archive

Free State Receives R7 Million Grant from the Mellon Foundation for Arts Innovation
2015-11-30


Man in the Green Blanket, Lesiba Mabitsela.
Photo: Karla Benade

Bloemfontein will experience a flood of new, experimental art over the next four years as a result of R7 million that has been received to develop experimental art projects in central South Africa. The Andrew W. Mellon Foundation recently awarded the grant to the University of the Free State (UFS) for the Programme for Innovation in Artform Development (PIAD). Initiated jointly by the UFS and the Vrystaat Arts Festival in 2014, PIAD was established as a programme to promote the exploration of the arts to advance interdisciplinary research and to impact on human development.

The Andrew W. Mellon Foundation is a New York-based, non-profit organisation which endeavours to strengthen, promote, and, where necessary, defend the contributions of the humanities and the arts to human flourishing, and to the well-being of diverse and democratic societies.

“The Innovation in Artform Development initiative will provide an important contribution to the ways in which the university hopes to broaden and deepen research and dialogue about the humanities in South African society. Using the arts as a vehicle to engage communities around issues of social significance, makes for an exciting endeavour, and we are happy to have Mellon’s financial and partnership investment in this initiative,” said Prof Jonathan Jansen, Vice-Chancellor of the UFS.

“This substantial support from the Foundation will play a pivotal role in facilitating collaborations with national and international artists to explore new, innovative modes of artistic practice and creative production in South Africa,” said Angela de Jesus, UFS Art Curator and Co-Director of PIAD.

“A series of First Nations projects, arts/science research and artist residencies, arts laboratories for creative practitioners, the production of exciting new work for Bloemfontein, and critical debates/forums is expected over the next few years,” she added.

PIAD focuses on supporting cross-cultural, experimental art programmes that can assist South African society creatively. For this process, PIAD is engaging the skills and expertise of South Africa artists in collaboration with several international partners, who are recognised as global leaders in this field, to develop a mutually- beneficial programme of engagement.  

Innovation, technology, and new forms of art will be explored and international collaborations that have the potential to attract benefits for the creative industries in Bloemfontein and beyond will be introduced.

“The artistic landscape of the Free State - in fact the whole South Africa - will be forever changed because of this extraordinarily generous grant. Rarely does a regional community get a chance to lead innovation on a national scale, and also impact on experimental art internationally. We are in for an incredible artistic journey,” said Dr Ricardo Peach, Director of the Vrystaat Arts Festival and Co-Director of PIAD.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept