Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story University of the Free State | Photo Supplied
Dr Hossein Naghizadeh and Refilwe Lediga
Collaborative innovation in action: Researchers from the University of the Free State’s Green Concrete Lab have partnered with the University of Johannesburg to advance 3D printing technologies using sustainable concrete materials. Pictured (from left): Dr Hossein Naghizadeh, Senior Lecturer in Engineering Sciences at UFS, and Refilwe Lediga, Concrete Printing Research Expert in the Department of Civil Engineering Technology at UJ.

In an ambitious and interdisciplinary effort to address today’s Grand Challenges, researchers at the University of the Free State (UFS) are exploring how nature’s oldest life forms – stromatolites – can inspire cutting-edge innovations in industrial ecology and marine conservation.  Drawing from biomimicry, 3D printing, and microbial engineering, their work showcases the convergence of ecological insight with modern technology. 

“One such example is replicating the structures of stromatolites – some of the earliest evidence of life - using green cement and 3D printing, the latest technology in industrial ecology,” explains Dr Jacques Maritz, Head of the Unit of Engineering Sciences at UFS. 

 

Ancient structures, modern science  

Stromatolites are layered microbial formations created by ancient cyanobacteria and date back over 3.5 billion years. These living fossils, found in fossil records and rare modern environments like Shark Bay in Australia, grow through a combination of photosynthesis, sediment trapping, and calcium carbonate precipitation. Not only do they support biodiversity, but they also play a vital role in natural carbon sequestration. 

UFS researchers are harnessing the lessons from these ancient formations to address urgent environmental challenges. In particular, Dr Yolandi Schoeman, Senior Lecturer at the Centre for Biogeochemistry, is leading efforts to cultivate hybrid stromatolites in controlled environments, using microbial consortia grown on 3D-printed scaffolds.  

“At UFS, we are reimagining stromatolite formation through both artificial structural replication and biological cultivation, bridging industrial ecology and microbial engineering to address modern environmental challenges,” says Dr Schoeman. 

 

Ecological engineering for reef restoration 

The rapid decline of marine biodiversity and the degradation of natural reef ecosystems have prompted ecological engineers to develop innovative solutions. At the UFS Green Concrete Lab, researchers are pioneering the design of artificial reefs using 3D-printed, low-carbon geopolymer concrete – a material formulated from industrial by-products such as fly ash and slag. 

Artificial reefs mimic natural reef complexity and serve as critical habitats for marine life, from fish and crustaceans to coral polyps and algae. Algae, in particular, are key to marine ecosystems due to their roles in nutrient cycling, oxygen production, and carbon capture. 

“Green concrete refers to concrete that utilises alternative binders and industrial by-products, significantly reducing the environmental footprint. At UFS, we are focusing on geopolymer concrete, which eliminates the high-energy processes associated with Portland cement, while offering greater chemical resistance - ideal for marine applications,” explains Dr Abdolhossein Naghizadeh from the Unit of Engineering Sciences. 

 

3D printing nature’s complexity 

One of the challenges in artificial reef development is replicating biologically inspired geometries that support diverse marine ecosystems. Traditional construction methods often fail in this regard, but additive manufacturing, or 3D concrete printing, is providing a solution.  

The UFS Green Concrete Lab, in collaboration with the University of Johannesburg, is developing reef modules with intricate geometries and natural surface textures. These features support coral and algae attachment, accelerate ecological colonisation, and enhance habitat functionality. Biochar-based compost filters are also being integrated to aid algae-driven wastewater treatment. 

A particularly novel avenue of research involves using 3D printing to recreate stromatolite structures. These serve as ancient blueprints for modern reef design, merging deep-time ecological understanding with advanced material science. 

 

Biologically engineered hybrid stromatolites  

In parallel to structural efforts, UFS is advancing biological approaches to stromatolite cultivation. From July 2025, researchers in the Unit of Engineering Sciences will initiate a large-scale experiment using microbial consortia in 60-litre tanks, scaling up to 1 m² hypersaline ponds. 3D-printed conical scaffolds, coated with materials such as PP-CaCO₃, hydroxyapatite, and silica gel, will accelerate microbial colonisation and lamination. 

The goal: to achieve stromatolite growth of 14-16 mm in just 28 days - over 150 times faster than in nature. These hybrid systems are expected to produce 7-8 mg/L/day of oxygen, sequester carbon at 3.2 g/m²/day, and remove up to 90% of nitrates and phosphates from water. The potential applications extend from terrestrial ecosystem restoration to extraterrestrial life-support systems. 

 

A multidisciplinary vision for sustainability 

This work exemplifies the strength of interdisciplinary research at UFS, combining civil engineering, mechatronics, marine ecology, chemistry, microbiology, and digital fabrication. The Ecological Engineering Sciences stream fosters a vibrant environment for postgraduate students to develop practical, impactful solutions.  

The Green Concrete Lab is central to these efforts, offering students and researchers access to advanced technologies and collaborative networks. Through their innovative work in 3D-printed green concrete and microbial systems, UFS researchers are addressing biodiversity loss, advancing sustainable construction, and contributing to the global climate agenda. 

“Whether it's rethinking materials, restoring ecosystems, or redefining what concrete can be, our research is laying the foundation for a better, more sustainable world beneath the waves,” concludes Dr Maritz. 

News Archive

UFS establishes a Postgraduate office
2007-07-18

The University of the Free State (UFS) will establish a postgraduate office that will serve as a one-stop service for the co-ordination of academic support services for postgraduate students.

According to the Director: Research Development at the UFS, Prof Frans Swanepoel, the primary purpose of the Postgraduate Office is to provide co-ordination and support services for postgraduate students and postdoctoral fellows, as well as academic staff across the University.

“Guided by values such as intellectual inquiry, innovation, collegiality, integrity and efficiency, the Postgraduate Office will seek to foster a challenging, inclusive and supportive environment for postgraduate teaching, learning, research and scholarship; and will strive to engage students in the vibrant life of a research university”, Prof Swanepoel said.

All sectors of the University, namely students, faculties and staff, stand to benefit from the establishment of this office. Amongst other benefits for these sectors, postgraduate students and postdoctoral research fellows will have their interests promoted in synergy with faculty and departmental facilities. On the other hand, the office will provide a critical resource to the faculties in the form of a single database of postgraduate students, postgraduate topics, supervisors and funding opportunities. Furthermore, it will serve as a useful resource and base for training and information for younger and less experienced staff members.

The establishment of this office will be undertaken in two phases. The first phase will focus on the most critical areas that will make an immediate impact and the second phase on those areas that are not as urgent.

Areas that will be prioritised include the appointment of a manager and co-ordination of stakeholders, the provision of information and communication, useful resources for the UFS, policy administration and monitoring, postgraduate supervisors’ facilitation, recruitment activities, advice and referral, and postgraduate scholarship and bursary management.

The less urgent components of the office will be the development and implementation of academic and professional support programmes, the formation of a research information commons to create an integrated learning environment for postgraduate students, and the development of a postgraduate association or a postgraduate students’ liaison committee to provide a recognised channel of communication between postgraduate students and the University authorities.

The Postgraduate Office will form a vital component of the Directorate Research Development (DRD) at the UFS because of its experience and a noteworthy track record with regard to a facilitative and co-ordinating role that would be essential for the office.

“Establishing the Postgraduate Office as part of the Directorate would give the Centre the necessary links to the research-related issues that are important to most of the postgraduate students at the UFS. Of essential importance will be the linkages with the full spectrum of Strategic Clusters”, Prof Swanepoel explained.

“An important component of the Postgraduate Office will be related to international students and international opportunities for UFS postgraduate students. As the Office for Internationalisation has similarly been placed within the Directorate, the work of the Postgraduate Office will be facilitated by similar placement within the same Directorate”, he concluded.

Media release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt.stg@mail.ufs.ac.za  
18 July 2007
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept