Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story University of the Free State | Photo Supplied
Dr Hossein Naghizadeh and Refilwe Lediga
Collaborative innovation in action: Researchers from the University of the Free State’s Green Concrete Lab have partnered with the University of Johannesburg to advance 3D printing technologies using sustainable concrete materials. Pictured (from left): Dr Hossein Naghizadeh, Senior Lecturer in Engineering Sciences at UFS, and Refilwe Lediga, Concrete Printing Research Expert in the Department of Civil Engineering Technology at UJ.

In an ambitious and interdisciplinary effort to address today’s Grand Challenges, researchers at the University of the Free State (UFS) are exploring how nature’s oldest life forms – stromatolites – can inspire cutting-edge innovations in industrial ecology and marine conservation.  Drawing from biomimicry, 3D printing, and microbial engineering, their work showcases the convergence of ecological insight with modern technology. 

“One such example is replicating the structures of stromatolites – some of the earliest evidence of life - using green cement and 3D printing, the latest technology in industrial ecology,” explains Dr Jacques Maritz, Head of the Unit of Engineering Sciences at UFS. 

 

Ancient structures, modern science  

Stromatolites are layered microbial formations created by ancient cyanobacteria and date back over 3.5 billion years. These living fossils, found in fossil records and rare modern environments like Shark Bay in Australia, grow through a combination of photosynthesis, sediment trapping, and calcium carbonate precipitation. Not only do they support biodiversity, but they also play a vital role in natural carbon sequestration. 

UFS researchers are harnessing the lessons from these ancient formations to address urgent environmental challenges. In particular, Dr Yolandi Schoeman, Senior Lecturer at the Centre for Biogeochemistry, is leading efforts to cultivate hybrid stromatolites in controlled environments, using microbial consortia grown on 3D-printed scaffolds.  

“At UFS, we are reimagining stromatolite formation through both artificial structural replication and biological cultivation, bridging industrial ecology and microbial engineering to address modern environmental challenges,” says Dr Schoeman. 

 

Ecological engineering for reef restoration 

The rapid decline of marine biodiversity and the degradation of natural reef ecosystems have prompted ecological engineers to develop innovative solutions. At the UFS Green Concrete Lab, researchers are pioneering the design of artificial reefs using 3D-printed, low-carbon geopolymer concrete – a material formulated from industrial by-products such as fly ash and slag. 

Artificial reefs mimic natural reef complexity and serve as critical habitats for marine life, from fish and crustaceans to coral polyps and algae. Algae, in particular, are key to marine ecosystems due to their roles in nutrient cycling, oxygen production, and carbon capture. 

“Green concrete refers to concrete that utilises alternative binders and industrial by-products, significantly reducing the environmental footprint. At UFS, we are focusing on geopolymer concrete, which eliminates the high-energy processes associated with Portland cement, while offering greater chemical resistance - ideal for marine applications,” explains Dr Abdolhossein Naghizadeh from the Unit of Engineering Sciences. 

 

3D printing nature’s complexity 

One of the challenges in artificial reef development is replicating biologically inspired geometries that support diverse marine ecosystems. Traditional construction methods often fail in this regard, but additive manufacturing, or 3D concrete printing, is providing a solution.  

The UFS Green Concrete Lab, in collaboration with the University of Johannesburg, is developing reef modules with intricate geometries and natural surface textures. These features support coral and algae attachment, accelerate ecological colonisation, and enhance habitat functionality. Biochar-based compost filters are also being integrated to aid algae-driven wastewater treatment. 

A particularly novel avenue of research involves using 3D printing to recreate stromatolite structures. These serve as ancient blueprints for modern reef design, merging deep-time ecological understanding with advanced material science. 

 

Biologically engineered hybrid stromatolites  

In parallel to structural efforts, UFS is advancing biological approaches to stromatolite cultivation. From July 2025, researchers in the Unit of Engineering Sciences will initiate a large-scale experiment using microbial consortia in 60-litre tanks, scaling up to 1 m² hypersaline ponds. 3D-printed conical scaffolds, coated with materials such as PP-CaCO₃, hydroxyapatite, and silica gel, will accelerate microbial colonisation and lamination. 

The goal: to achieve stromatolite growth of 14-16 mm in just 28 days - over 150 times faster than in nature. These hybrid systems are expected to produce 7-8 mg/L/day of oxygen, sequester carbon at 3.2 g/m²/day, and remove up to 90% of nitrates and phosphates from water. The potential applications extend from terrestrial ecosystem restoration to extraterrestrial life-support systems. 

 

A multidisciplinary vision for sustainability 

This work exemplifies the strength of interdisciplinary research at UFS, combining civil engineering, mechatronics, marine ecology, chemistry, microbiology, and digital fabrication. The Ecological Engineering Sciences stream fosters a vibrant environment for postgraduate students to develop practical, impactful solutions.  

The Green Concrete Lab is central to these efforts, offering students and researchers access to advanced technologies and collaborative networks. Through their innovative work in 3D-printed green concrete and microbial systems, UFS researchers are addressing biodiversity loss, advancing sustainable construction, and contributing to the global climate agenda. 

“Whether it's rethinking materials, restoring ecosystems, or redefining what concrete can be, our research is laying the foundation for a better, more sustainable world beneath the waves,” concludes Dr Maritz. 

News Archive

An education system based on hope is what South Africa needs – Dr Beryl Botman
2016-05-26

Description: Hope revised Tags: Hope revised

Dr Beryl Botman, a postdoctoral research
fellow at the IRSJ, with Dr Willy Nel research associate
at the IRSJ and lecturer at the UFS
Faculty of Education.

HOPE is tangible and concrete construct that should be rooted in the learning and training of teachers,” said Dr Beryl Botman, a postdoctoral research fellow at the Institute for Reconciliation and Social Justice (IRSJ).

She presented her research paper Educators, praxis, and hope: A philosophical analysis of post-apartheid teacher education policy, based on the theoretical ideologies of Paulo Freire’s Pedagogy of the Oppressed. She explores ways in which oppression has been justified, and how it has been overcome through a mutual process between the oppressor and the oppressed, drawing on Paolo Freire’s theories and practices. The presentation was held at the University of the Free State’s (UFS) Faculty of Education, on the Bloemfontein campus on 13 May 2016.

From oppression to hope

Hope should be an educational construct for teacher education in South Africa. Dr Botman asserts that epistemology and ontology should be inseparable, as they are pivotal to an education system that is transformational.

The recent country-wide student protests and demonstrations are an indicant that education institutions need to seek understanding of mechanisms that fuel social conflict. Dr Botman claims that vast social inequalities make the process of democratisation difficult thus hindering transformation. She states that a critical consciousness is important for all South Africans, but more so for educators; it can be used as a tool to understanding the mechanisms of social conflict.

“Self-reflection and self-critique is vital for educators, we need to understand that we do not have all the answers because we ever-evolving beings, working on understanding ourselves and the people around us,” said Dr Botman.

The notion of hope
“I am a farmer. I have no hope for a future that is different from today. This quotation comes from Paulo Freire’s work," said Dr Botman. She said that the South African context and environment is similar. She said that people cannot live for today; one should live for tomorrow if hope is to manifest itself.

South African education environment needs to adopt a progressive consciousness that is future orientated, “You need to be hopeful, if you are radical. You need to be able to envision a new society and a new world,” said Dr Botman.

“You cannot only denounce the present, you need to also announce your hopes for a new society. South Africa needs education systems built on understanding. Although change is difficult, it is necessary for transformation,” Dr Botman added.

What makes hope educational?
“Hope is a vision for a tomorrow that is different, and vital for a transformative education system. To get out of a state of despair, people need to educate their hope. Lately, the issue of white privilege has been brought to the fore. You need to educate your hope, so that you understand the reality of others but, more importantly, of yourself,” said Dr Botman.

Dr Botma added that teacher education needs to adopt a Freirean pedagogy with a strong philosophy based on hope. The agency of teachers can either be hopeful or without hope. It is vital that education promotes hope.

“Teachers need to rely on their existential experience, the experiences of others, and the experiences of the children or students they teach. An understanding of all these experience reinforces the idea that people are life-long learners, always learning and adapting to society’s needs,” said Dr Botman.

Teachers as agents of hope

Dr Botman stated that current South African education policy is directed towards transformation but it does not stipulate means to achieve this objective. Further, she argues that educators need to put greater emphasis on self-knowledge, self-reflection, and self-education. Connecting with teachers, parents, students and the community engages with their self-knowledge and reflection.

Reorientation of teacher education
Dr Botman concluded by mentioning that rethinking ontological and epistemological aspects of education is important, and should be a pivotal point of teacher education. A renewed vision of hope-orientated philosophy and pedagogy needs to be adopted by the education institutions. A praxis, which is an informed action, when a balance between theory and practice is achieved. There is a need for an inclusive exploration of education philosophies and education systems not only European and Western but also African and Eastern as well.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept