Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story University of the Free State | Photo Supplied
Dr Hossein Naghizadeh and Refilwe Lediga
Collaborative innovation in action: Researchers from the University of the Free State’s Green Concrete Lab have partnered with the University of Johannesburg to advance 3D printing technologies using sustainable concrete materials. Pictured (from left): Dr Hossein Naghizadeh, Senior Lecturer in Engineering Sciences at UFS, and Refilwe Lediga, Concrete Printing Research Expert in the Department of Civil Engineering Technology at UJ.

In an ambitious and interdisciplinary effort to address today’s Grand Challenges, researchers at the University of the Free State (UFS) are exploring how nature’s oldest life forms – stromatolites – can inspire cutting-edge innovations in industrial ecology and marine conservation.  Drawing from biomimicry, 3D printing, and microbial engineering, their work showcases the convergence of ecological insight with modern technology. 

“One such example is replicating the structures of stromatolites – some of the earliest evidence of life - using green cement and 3D printing, the latest technology in industrial ecology,” explains Dr Jacques Maritz, Head of the Unit of Engineering Sciences at UFS. 

 

Ancient structures, modern science  

Stromatolites are layered microbial formations created by ancient cyanobacteria and date back over 3.5 billion years. These living fossils, found in fossil records and rare modern environments like Shark Bay in Australia, grow through a combination of photosynthesis, sediment trapping, and calcium carbonate precipitation. Not only do they support biodiversity, but they also play a vital role in natural carbon sequestration. 

UFS researchers are harnessing the lessons from these ancient formations to address urgent environmental challenges. In particular, Dr Yolandi Schoeman, Senior Lecturer at the Centre for Biogeochemistry, is leading efforts to cultivate hybrid stromatolites in controlled environments, using microbial consortia grown on 3D-printed scaffolds.  

“At UFS, we are reimagining stromatolite formation through both artificial structural replication and biological cultivation, bridging industrial ecology and microbial engineering to address modern environmental challenges,” says Dr Schoeman. 

 

Ecological engineering for reef restoration 

The rapid decline of marine biodiversity and the degradation of natural reef ecosystems have prompted ecological engineers to develop innovative solutions. At the UFS Green Concrete Lab, researchers are pioneering the design of artificial reefs using 3D-printed, low-carbon geopolymer concrete – a material formulated from industrial by-products such as fly ash and slag. 

Artificial reefs mimic natural reef complexity and serve as critical habitats for marine life, from fish and crustaceans to coral polyps and algae. Algae, in particular, are key to marine ecosystems due to their roles in nutrient cycling, oxygen production, and carbon capture. 

“Green concrete refers to concrete that utilises alternative binders and industrial by-products, significantly reducing the environmental footprint. At UFS, we are focusing on geopolymer concrete, which eliminates the high-energy processes associated with Portland cement, while offering greater chemical resistance - ideal for marine applications,” explains Dr Abdolhossein Naghizadeh from the Unit of Engineering Sciences. 

 

3D printing nature’s complexity 

One of the challenges in artificial reef development is replicating biologically inspired geometries that support diverse marine ecosystems. Traditional construction methods often fail in this regard, but additive manufacturing, or 3D concrete printing, is providing a solution.  

The UFS Green Concrete Lab, in collaboration with the University of Johannesburg, is developing reef modules with intricate geometries and natural surface textures. These features support coral and algae attachment, accelerate ecological colonisation, and enhance habitat functionality. Biochar-based compost filters are also being integrated to aid algae-driven wastewater treatment. 

A particularly novel avenue of research involves using 3D printing to recreate stromatolite structures. These serve as ancient blueprints for modern reef design, merging deep-time ecological understanding with advanced material science. 

 

Biologically engineered hybrid stromatolites  

In parallel to structural efforts, UFS is advancing biological approaches to stromatolite cultivation. From July 2025, researchers in the Unit of Engineering Sciences will initiate a large-scale experiment using microbial consortia in 60-litre tanks, scaling up to 1 m² hypersaline ponds. 3D-printed conical scaffolds, coated with materials such as PP-CaCO₃, hydroxyapatite, and silica gel, will accelerate microbial colonisation and lamination. 

The goal: to achieve stromatolite growth of 14-16 mm in just 28 days - over 150 times faster than in nature. These hybrid systems are expected to produce 7-8 mg/L/day of oxygen, sequester carbon at 3.2 g/m²/day, and remove up to 90% of nitrates and phosphates from water. The potential applications extend from terrestrial ecosystem restoration to extraterrestrial life-support systems. 

 

A multidisciplinary vision for sustainability 

This work exemplifies the strength of interdisciplinary research at UFS, combining civil engineering, mechatronics, marine ecology, chemistry, microbiology, and digital fabrication. The Ecological Engineering Sciences stream fosters a vibrant environment for postgraduate students to develop practical, impactful solutions.  

The Green Concrete Lab is central to these efforts, offering students and researchers access to advanced technologies and collaborative networks. Through their innovative work in 3D-printed green concrete and microbial systems, UFS researchers are addressing biodiversity loss, advancing sustainable construction, and contributing to the global climate agenda. 

“Whether it's rethinking materials, restoring ecosystems, or redefining what concrete can be, our research is laying the foundation for a better, more sustainable world beneath the waves,” concludes Dr Maritz. 

News Archive

Innovation the focus of 28th Sophia Gray Memorial Lecture
2016-09-06

Description: Stratford furniture design Tags: Stratford furniture design

Stratford never lost his passion for designing
furniture. Pictured here is some of his furniture
exhibited at the Oliewenhuis Art Museum.
Photo: Francois van Vuuren: iFlair Photography

Al Stratford, designer, inventor and architect, presented the 28th Sophia Gray Memorial Lecture on 25 August at the Reservoir at the Oliewenhuis Art Museum in Bloemfontein. The event, hosted by the Department of Architecture at the University of the Free State, was also the opening of an exhibition of Stratford’s work.

In his career of 40 years, Stratford has patented many products and won several awards in industrial design and architecture. He is known in South Africa for his development of innovative building technology such as the Winblok Precast Concrete Window System. In 2009 and 2010, he also served as president of the South African Institute of Architects.

The title of his lecture was: Reductive Innovation in Architecture. Throughout his career, Stratford endeavoured – through his designs and inventions – to apply the principle of “reduction” to the building material he used and technology he examined.

Stratford designs and builds smart buildings
Stratford says a home is the paradigm of self-expression. His career as architect started with the building of five houses in Gonubie, near East London. Everything he knew about architecture at that stage, he had taught himself by reading on the subject at the local library. Later on, he achieved great heights in his career by designing and building, among others, the Stratford Guesthouse; the sustainable and resourcefully designed campus buildings for the University of Fort Hare (an institutional building not utilising any electrical air-conditioning); the Edenvale Baptist Church; and a community hall.

His technology is widely used in the building industry

“The arrogance in me gets humiliated when I
see what other people and God has done.”


His technical drawing skills, acquired at an early age during his training as motor mechanic, are still practised years later, particularly in his inventions. Stratford is the inventor of technology commonly used in the building industry today. Of these, the Winblok window system which he patented in 1981, is one of his best known patents. The use of these windows is characteristic of many of the buildings he designed and built. Other technology he invented and patented, includes the Winstep stairs, the Windeck flooring system, and the StratFlex furniture technology.

Furniture designs win him awards
He likes to quote architect Ludwig Mies van der Rohe: “A chair is a very difficult object. A skyscraper is easier.” Stratford started designing and manufacturing his own furniture and never lost this passion. In 2013, he won the Innovation Award at the Design Indaba for his “flat pack” furniture technology.

The humble Stratford – designer, inventor, industrialist, and architect – says he is simply playing around with God’s creation. “The arrogance in me gets humiliated when I see what other people and God has done.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept