Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story University of the Free State | Photo Supplied
Dr Hossein Naghizadeh and Refilwe Lediga
Collaborative innovation in action: Researchers from the University of the Free State’s Green Concrete Lab have partnered with the University of Johannesburg to advance 3D printing technologies using sustainable concrete materials. Pictured (from left): Dr Hossein Naghizadeh, Senior Lecturer in Engineering Sciences at UFS, and Refilwe Lediga, Concrete Printing Research Expert in the Department of Civil Engineering Technology at UJ.

In an ambitious and interdisciplinary effort to address today’s Grand Challenges, researchers at the University of the Free State (UFS) are exploring how nature’s oldest life forms – stromatolites – can inspire cutting-edge innovations in industrial ecology and marine conservation.  Drawing from biomimicry, 3D printing, and microbial engineering, their work showcases the convergence of ecological insight with modern technology. 

“One such example is replicating the structures of stromatolites – some of the earliest evidence of life - using green cement and 3D printing, the latest technology in industrial ecology,” explains Dr Jacques Maritz, Head of the Unit of Engineering Sciences at UFS. 

 

Ancient structures, modern science  

Stromatolites are layered microbial formations created by ancient cyanobacteria and date back over 3.5 billion years. These living fossils, found in fossil records and rare modern environments like Shark Bay in Australia, grow through a combination of photosynthesis, sediment trapping, and calcium carbonate precipitation. Not only do they support biodiversity, but they also play a vital role in natural carbon sequestration. 

UFS researchers are harnessing the lessons from these ancient formations to address urgent environmental challenges. In particular, Dr Yolandi Schoeman, Senior Lecturer at the Centre for Biogeochemistry, is leading efforts to cultivate hybrid stromatolites in controlled environments, using microbial consortia grown on 3D-printed scaffolds.  

“At UFS, we are reimagining stromatolite formation through both artificial structural replication and biological cultivation, bridging industrial ecology and microbial engineering to address modern environmental challenges,” says Dr Schoeman. 

 

Ecological engineering for reef restoration 

The rapid decline of marine biodiversity and the degradation of natural reef ecosystems have prompted ecological engineers to develop innovative solutions. At the UFS Green Concrete Lab, researchers are pioneering the design of artificial reefs using 3D-printed, low-carbon geopolymer concrete – a material formulated from industrial by-products such as fly ash and slag. 

Artificial reefs mimic natural reef complexity and serve as critical habitats for marine life, from fish and crustaceans to coral polyps and algae. Algae, in particular, are key to marine ecosystems due to their roles in nutrient cycling, oxygen production, and carbon capture. 

“Green concrete refers to concrete that utilises alternative binders and industrial by-products, significantly reducing the environmental footprint. At UFS, we are focusing on geopolymer concrete, which eliminates the high-energy processes associated with Portland cement, while offering greater chemical resistance - ideal for marine applications,” explains Dr Abdolhossein Naghizadeh from the Unit of Engineering Sciences. 

 

3D printing nature’s complexity 

One of the challenges in artificial reef development is replicating biologically inspired geometries that support diverse marine ecosystems. Traditional construction methods often fail in this regard, but additive manufacturing, or 3D concrete printing, is providing a solution.  

The UFS Green Concrete Lab, in collaboration with the University of Johannesburg, is developing reef modules with intricate geometries and natural surface textures. These features support coral and algae attachment, accelerate ecological colonisation, and enhance habitat functionality. Biochar-based compost filters are also being integrated to aid algae-driven wastewater treatment. 

A particularly novel avenue of research involves using 3D printing to recreate stromatolite structures. These serve as ancient blueprints for modern reef design, merging deep-time ecological understanding with advanced material science. 

 

Biologically engineered hybrid stromatolites  

In parallel to structural efforts, UFS is advancing biological approaches to stromatolite cultivation. From July 2025, researchers in the Unit of Engineering Sciences will initiate a large-scale experiment using microbial consortia in 60-litre tanks, scaling up to 1 m² hypersaline ponds. 3D-printed conical scaffolds, coated with materials such as PP-CaCO₃, hydroxyapatite, and silica gel, will accelerate microbial colonisation and lamination. 

The goal: to achieve stromatolite growth of 14-16 mm in just 28 days - over 150 times faster than in nature. These hybrid systems are expected to produce 7-8 mg/L/day of oxygen, sequester carbon at 3.2 g/m²/day, and remove up to 90% of nitrates and phosphates from water. The potential applications extend from terrestrial ecosystem restoration to extraterrestrial life-support systems. 

 

A multidisciplinary vision for sustainability 

This work exemplifies the strength of interdisciplinary research at UFS, combining civil engineering, mechatronics, marine ecology, chemistry, microbiology, and digital fabrication. The Ecological Engineering Sciences stream fosters a vibrant environment for postgraduate students to develop practical, impactful solutions.  

The Green Concrete Lab is central to these efforts, offering students and researchers access to advanced technologies and collaborative networks. Through their innovative work in 3D-printed green concrete and microbial systems, UFS researchers are addressing biodiversity loss, advancing sustainable construction, and contributing to the global climate agenda. 

“Whether it's rethinking materials, restoring ecosystems, or redefining what concrete can be, our research is laying the foundation for a better, more sustainable world beneath the waves,” concludes Dr Maritz. 

News Archive

Parking at UFS for visitors
2007-11-10

UFS creates more parking for visitors

In its effort to make it easier for visitors to park on the Main Campus of the University of the Free State (UFS) in Bloemfontein, two paid parking areas will be put into operation as from Monday, 5 November 2007.

These parking areas are part of a comprehensive new parking strategy of the UFS, which is being implemented since September 2007. As part of the strategy, areas of the central campus have been reserved for staff and visitors and hundreds of new parking areas were developed for students at the entrance in Wynand Mouton Avenue (at the Faculty of Health Sciences) and the entrance in DF Malherbe Avenue (at the Agriculture Building).

“The paid parking areas for visitors, which are as close as possible to the busy and largely closed-off central campus, were created as an additional service to visitors,” said Ms Edma Pelzer, Director of Physical Resources at the UFS.

According to Ms Pelzer, persons who attend meetings, seminars or short courses, visiting colleagues, consultants, service providers, family of students and staff members, clients, etc. can make use of this parking.

“We have found that it is often difficult for visitors to obtain parking in or close to the central campus. Now they will have a choice to either park in the visitors parking areas at a minimal fee or to park in any of the open unreserved parking areas on campus,” said Ms Pelzer.

The areas, which will be closed off behind booms on weekdays from 06:00 until 18:00, are situated to the eastern side of the “Red Square”, east of the CR Swart and Idalia Loots Buildings and west of Campus Avenue North between the Psychology and the Flippie Groenewoud Buildings.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
2 November 2007

Parking for visitors: Important notice:

As from Monday 5 November 2007 two paid parking areas on the UFS Campus will be put into operation. The areas will be closed off behind booms on weekdays from 06:00 until 18:00. These will be manned and R3 per hour will be charged.
 

The following areas are involved:

  • P3: The area to the east of the “Red Square”, east of the CR Swart and Idalia Loots Buildings.

     
  • P6: The area to the east of Campus Avenue North between the Psychology and Flippie Groenewoud Buildings.

    The friendly co-operation of users of motor vehicles on campus is requested to allow this implementation to proceed as smoothly as possible.

Parking for visitors: More information

The strategy to create paid parking areas for visitors

The decision to reserve areas in the central campus areas for the convenience of visitors was taken as part of the comprehensive new parking strategy of the UFS approved by the Executive Management in May 2007 and which is being implemented since September.

All visitors need not park in these areas. Visitors may park for free on any open (unreserved) parking bay on campus. These paid parking areas for visitors, as close as possible to the busy and largely closed-off central campus, have been created as an additional service to visitors.

The strategy to close off parts of the central campus for staff members and visitors was implemented after sufficient alternative parking areas had been developed for students.

What is meant by the term “visitors”?

It includes all persons who are not students of staff members of the UFS and who visit the campus for one reason or another. Persons who attend meetings, seminars or short courses, visiting colleagues, consultants, service providers, family of students and staff members, et cetera are included.

As at present, it will, of course, be possible to make special arrangements with Protection Services to make it possible for VIP visitors to park as near as possible to their destinations.

No student or staff member will be actively prevented from parking in the area. They will, however, be discouraged by the fact that R3 per hour will be charged without exception.

The visitors’ parking area and access to it

  • P3: The area to the east of the “Red Square”, east of the CR Swart and Idalia Loots Buildings. The area is within easy walking distance for visitors to, among others, the following buildings: George du Toit Administration Building, Theology Building, Idalia Loots Building, CR Swart Building, Johannes Brill Building, Van der Merwe Scholz Hall.

    The area is conveniently accessible from the following entrances: Nelson Mandela Drive, Groenewoud Street and Wynand Mouton Drive.

     
  • P6: The area to the west of Campus Avenue North, between the Psychology and Flippie Groenewoud Buildings. The area is within easy walking distance for visitors to all the academic buildings in the central campus, such as the Chemistry Building, Stef Coetzee Building, the Geography Building, et cetera and located directly opposite the general information point on the Thakaneng Bridge.

    The area is conveniently accessible from the following entrances: Fürstenburg Road and DF Malherbe Avenue (at the Agriculture Building).

     

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept