Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story University of the Free State | Photo Supplied
Dr Hossein Naghizadeh and Refilwe Lediga
Collaborative innovation in action: Researchers from the University of the Free State’s Green Concrete Lab have partnered with the University of Johannesburg to advance 3D printing technologies using sustainable concrete materials. Pictured (from left): Dr Hossein Naghizadeh, Senior Lecturer in Engineering Sciences at UFS, and Refilwe Lediga, Concrete Printing Research Expert in the Department of Civil Engineering Technology at UJ.

In an ambitious and interdisciplinary effort to address today’s Grand Challenges, researchers at the University of the Free State (UFS) are exploring how nature’s oldest life forms – stromatolites – can inspire cutting-edge innovations in industrial ecology and marine conservation.  Drawing from biomimicry, 3D printing, and microbial engineering, their work showcases the convergence of ecological insight with modern technology. 

“One such example is replicating the structures of stromatolites – some of the earliest evidence of life - using green cement and 3D printing, the latest technology in industrial ecology,” explains Dr Jacques Maritz, Head of the Unit of Engineering Sciences at UFS. 

 

Ancient structures, modern science  

Stromatolites are layered microbial formations created by ancient cyanobacteria and date back over 3.5 billion years. These living fossils, found in fossil records and rare modern environments like Shark Bay in Australia, grow through a combination of photosynthesis, sediment trapping, and calcium carbonate precipitation. Not only do they support biodiversity, but they also play a vital role in natural carbon sequestration. 

UFS researchers are harnessing the lessons from these ancient formations to address urgent environmental challenges. In particular, Dr Yolandi Schoeman, Senior Lecturer at the Centre for Biogeochemistry, is leading efforts to cultivate hybrid stromatolites in controlled environments, using microbial consortia grown on 3D-printed scaffolds.  

“At UFS, we are reimagining stromatolite formation through both artificial structural replication and biological cultivation, bridging industrial ecology and microbial engineering to address modern environmental challenges,” says Dr Schoeman. 

 

Ecological engineering for reef restoration 

The rapid decline of marine biodiversity and the degradation of natural reef ecosystems have prompted ecological engineers to develop innovative solutions. At the UFS Green Concrete Lab, researchers are pioneering the design of artificial reefs using 3D-printed, low-carbon geopolymer concrete – a material formulated from industrial by-products such as fly ash and slag. 

Artificial reefs mimic natural reef complexity and serve as critical habitats for marine life, from fish and crustaceans to coral polyps and algae. Algae, in particular, are key to marine ecosystems due to their roles in nutrient cycling, oxygen production, and carbon capture. 

“Green concrete refers to concrete that utilises alternative binders and industrial by-products, significantly reducing the environmental footprint. At UFS, we are focusing on geopolymer concrete, which eliminates the high-energy processes associated with Portland cement, while offering greater chemical resistance - ideal for marine applications,” explains Dr Abdolhossein Naghizadeh from the Unit of Engineering Sciences. 

 

3D printing nature’s complexity 

One of the challenges in artificial reef development is replicating biologically inspired geometries that support diverse marine ecosystems. Traditional construction methods often fail in this regard, but additive manufacturing, or 3D concrete printing, is providing a solution.  

The UFS Green Concrete Lab, in collaboration with the University of Johannesburg, is developing reef modules with intricate geometries and natural surface textures. These features support coral and algae attachment, accelerate ecological colonisation, and enhance habitat functionality. Biochar-based compost filters are also being integrated to aid algae-driven wastewater treatment. 

A particularly novel avenue of research involves using 3D printing to recreate stromatolite structures. These serve as ancient blueprints for modern reef design, merging deep-time ecological understanding with advanced material science. 

 

Biologically engineered hybrid stromatolites  

In parallel to structural efforts, UFS is advancing biological approaches to stromatolite cultivation. From July 2025, researchers in the Unit of Engineering Sciences will initiate a large-scale experiment using microbial consortia in 60-litre tanks, scaling up to 1 m² hypersaline ponds. 3D-printed conical scaffolds, coated with materials such as PP-CaCO₃, hydroxyapatite, and silica gel, will accelerate microbial colonisation and lamination. 

The goal: to achieve stromatolite growth of 14-16 mm in just 28 days - over 150 times faster than in nature. These hybrid systems are expected to produce 7-8 mg/L/day of oxygen, sequester carbon at 3.2 g/m²/day, and remove up to 90% of nitrates and phosphates from water. The potential applications extend from terrestrial ecosystem restoration to extraterrestrial life-support systems. 

 

A multidisciplinary vision for sustainability 

This work exemplifies the strength of interdisciplinary research at UFS, combining civil engineering, mechatronics, marine ecology, chemistry, microbiology, and digital fabrication. The Ecological Engineering Sciences stream fosters a vibrant environment for postgraduate students to develop practical, impactful solutions.  

The Green Concrete Lab is central to these efforts, offering students and researchers access to advanced technologies and collaborative networks. Through their innovative work in 3D-printed green concrete and microbial systems, UFS researchers are addressing biodiversity loss, advancing sustainable construction, and contributing to the global climate agenda. 

“Whether it's rethinking materials, restoring ecosystems, or redefining what concrete can be, our research is laying the foundation for a better, more sustainable world beneath the waves,” concludes Dr Maritz. 

News Archive

UFS students win Innovation prize
2007-11-05

 

From the left are, front: Kasey Kakoma (member of the winning team) and Ji-Yun Lee (member of the winning team); back: Prof. Herman van Schalkwyk (Dean of the Faculty of Natural and Agricultural Sciences at the UFS), Lehlohonolo Mathengtheng (member of the winning team) and Prof. Gerrit van Wyk (consultant from Technology Transfer Projects who arranged the first phase of the competition).
Photo (Leonie Bolleurs):
 

UFS students win Innovation prize

Prizes to the value of R100 000 were recently handed to students in the Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS) during a prize winners function of the National Innovation Competition.
“The competition is sponsored by the Innovation Fund, which was established by the national Department of Science and Technology and is managed by the National Research Foundation (NRF). The competition seeks to develop innovation and entrepreneurship amongst students in higher education institutions,” said Prof. Teuns Verschoor, Vice-Rector of Academic Operations at the UFS.

Most universities in South Africa take part in the competition. “The first phase of the competition is per university where students can win prize money to the value of R100 000. The three winners then compete in the national competition, where prize money to the value of R600 000 can be won,” said Prof. Verschoor.

Eight teams from the Faculty of Natural and Agricultural Sciences competed in the local competition. The teams had to submit a business plan, which was judged by six external adjudicators.

The winning team from the Department of Microbial, Biochemical and Food Biotechnology submitted their business plan with the title: “Using bacteriophages to combat specific bacterial infections in poultry". The team, consisting of Kasey Kakoma from Zambia, Lehlohonolo Mathengtheng from South Africa, and Ji-Yun Lee from South Korea, were awarded R50 000 in cash. All three students are Master’s degree students in Microbiology in the Veterinary Biotechnology Research group at the UFS.

The team who came second was from the Department of Physics with team leader Lisa Coetzee and they received R30 000. The title of their project was “Light of the future”. The third prize of R20 000 went to Lizette Jordaan of the Department of Chemistry with a project entitled: “Development of a viable synthetic route towards a natural substrate with possible application in the industry”.

Prof. Gerrit van Wyk, former dean of the UFS Faculty of Natural and Agricultural Sciences and consultant for Technology Transfer Projects, annually drives this competition.

In his announcement of the winners of the first phase of the 2007 National Innovation Competition, Prof. Herman van Schalkwyk, Dean of the UFS Faculty of Natural and Agricultural Sciences, said innovation and entrepreneurship are important to stimulate and create sustainable economic growth in South Africa. “Through this competition universities get the opportunity to show to South Africa its capabilities in the arena of innovation and commercialisation of ideas,” he said.

To proceed to the second phase of the competition, the business plans of the three finalists from each qualifying higher education institution will be submitted for the national competition. The best three students from each participating institution will exhibit their innovations at the national awards ceremony early in 2008. The top ten entrants and subsequently the best three business plans from the total entries will then be short listed. The prize money won at the national competition has to be used for the commercialisation of the project or the founding of a company.

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
5 November 2007
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept