Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story University of the Free State | Photo Supplied
Dr Hossein Naghizadeh and Refilwe Lediga
Collaborative innovation in action: Researchers from the University of the Free State’s Green Concrete Lab have partnered with the University of Johannesburg to advance 3D printing technologies using sustainable concrete materials. Pictured (from left): Dr Hossein Naghizadeh, Senior Lecturer in Engineering Sciences at UFS, and Refilwe Lediga, Concrete Printing Research Expert in the Department of Civil Engineering Technology at UJ.

In an ambitious and interdisciplinary effort to address today’s Grand Challenges, researchers at the University of the Free State (UFS) are exploring how nature’s oldest life forms – stromatolites – can inspire cutting-edge innovations in industrial ecology and marine conservation.  Drawing from biomimicry, 3D printing, and microbial engineering, their work showcases the convergence of ecological insight with modern technology. 

“One such example is replicating the structures of stromatolites – some of the earliest evidence of life - using green cement and 3D printing, the latest technology in industrial ecology,” explains Dr Jacques Maritz, Head of the Unit of Engineering Sciences at UFS. 

 

Ancient structures, modern science  

Stromatolites are layered microbial formations created by ancient cyanobacteria and date back over 3.5 billion years. These living fossils, found in fossil records and rare modern environments like Shark Bay in Australia, grow through a combination of photosynthesis, sediment trapping, and calcium carbonate precipitation. Not only do they support biodiversity, but they also play a vital role in natural carbon sequestration. 

UFS researchers are harnessing the lessons from these ancient formations to address urgent environmental challenges. In particular, Dr Yolandi Schoeman, Senior Lecturer at the Centre for Biogeochemistry, is leading efforts to cultivate hybrid stromatolites in controlled environments, using microbial consortia grown on 3D-printed scaffolds.  

“At UFS, we are reimagining stromatolite formation through both artificial structural replication and biological cultivation, bridging industrial ecology and microbial engineering to address modern environmental challenges,” says Dr Schoeman. 

 

Ecological engineering for reef restoration 

The rapid decline of marine biodiversity and the degradation of natural reef ecosystems have prompted ecological engineers to develop innovative solutions. At the UFS Green Concrete Lab, researchers are pioneering the design of artificial reefs using 3D-printed, low-carbon geopolymer concrete – a material formulated from industrial by-products such as fly ash and slag. 

Artificial reefs mimic natural reef complexity and serve as critical habitats for marine life, from fish and crustaceans to coral polyps and algae. Algae, in particular, are key to marine ecosystems due to their roles in nutrient cycling, oxygen production, and carbon capture. 

“Green concrete refers to concrete that utilises alternative binders and industrial by-products, significantly reducing the environmental footprint. At UFS, we are focusing on geopolymer concrete, which eliminates the high-energy processes associated with Portland cement, while offering greater chemical resistance - ideal for marine applications,” explains Dr Abdolhossein Naghizadeh from the Unit of Engineering Sciences. 

 

3D printing nature’s complexity 

One of the challenges in artificial reef development is replicating biologically inspired geometries that support diverse marine ecosystems. Traditional construction methods often fail in this regard, but additive manufacturing, or 3D concrete printing, is providing a solution.  

The UFS Green Concrete Lab, in collaboration with the University of Johannesburg, is developing reef modules with intricate geometries and natural surface textures. These features support coral and algae attachment, accelerate ecological colonisation, and enhance habitat functionality. Biochar-based compost filters are also being integrated to aid algae-driven wastewater treatment. 

A particularly novel avenue of research involves using 3D printing to recreate stromatolite structures. These serve as ancient blueprints for modern reef design, merging deep-time ecological understanding with advanced material science. 

 

Biologically engineered hybrid stromatolites  

In parallel to structural efforts, UFS is advancing biological approaches to stromatolite cultivation. From July 2025, researchers in the Unit of Engineering Sciences will initiate a large-scale experiment using microbial consortia in 60-litre tanks, scaling up to 1 m² hypersaline ponds. 3D-printed conical scaffolds, coated with materials such as PP-CaCO₃, hydroxyapatite, and silica gel, will accelerate microbial colonisation and lamination. 

The goal: to achieve stromatolite growth of 14-16 mm in just 28 days - over 150 times faster than in nature. These hybrid systems are expected to produce 7-8 mg/L/day of oxygen, sequester carbon at 3.2 g/m²/day, and remove up to 90% of nitrates and phosphates from water. The potential applications extend from terrestrial ecosystem restoration to extraterrestrial life-support systems. 

 

A multidisciplinary vision for sustainability 

This work exemplifies the strength of interdisciplinary research at UFS, combining civil engineering, mechatronics, marine ecology, chemistry, microbiology, and digital fabrication. The Ecological Engineering Sciences stream fosters a vibrant environment for postgraduate students to develop practical, impactful solutions.  

The Green Concrete Lab is central to these efforts, offering students and researchers access to advanced technologies and collaborative networks. Through their innovative work in 3D-printed green concrete and microbial systems, UFS researchers are addressing biodiversity loss, advancing sustainable construction, and contributing to the global climate agenda. 

“Whether it's rethinking materials, restoring ecosystems, or redefining what concrete can be, our research is laying the foundation for a better, more sustainable world beneath the waves,” concludes Dr Maritz. 

News Archive

Guidelines for diminishing the possible impact of power interruptions on academic activities at the UFS
2008-01-31

The Executive Management of the UFS resolved to attempt to manage the possible impact of power interruptions on teaching and learning proactively. Our greatest challenge is to adapt to what we cannot control at present and, as far as possible, refrain from compromising the quality of teaching and learning at the UFS.

First the following realities are important:

  • There is no clarity regarding the period of disruption. It is possible that it may last for a few months to approximately five years.
  • At present Eskom (as well as Centlec) is not giving any guarantees that the scheduled interruptions will be adhered to. It comes down to this that the power supply may be interrupted without notice, but can also be switched back on in an unpredictable manner.
  • Certain scheduled teaching-learning activities/classes, etc. may (initially) be affected very negatively, as the UFS is working according to a scheduled weekly module timetable at present.
  • During the day certain venues with natural lighting and ventilation may remain suitable for contact sessions, while towards evening venues will no longer be suitable for the presentation of classes.
  • Lecturers will have to fall back on tried and tested presentation methods not linked to electricity, without neglecting innovative technology-linked presentation methods, or will have to schedule alternative teaching-learning activities for lost teaching-learning time.

Against the background of the above-mentioned realities, we secondly request you to comply with the following guidelines as far as possible:

  1.  In addition to your module work programme, develop an alternative programme (which can, for example, among others, consist of additional lectures or a more rapid work rate) in which provision is made for a loss of at least two weeks’ class/contact time during the semester. Consult Centlec’s schedule of foreseen power interruptions for this planning.
  2. Should it appear that your class(es) will probably be disrupted seriously by the scheduled power interruptions, you should contact your dean for possible rescheduling of your timeslot and a supplementary timetable. A prescheduled supplementary timetable for Friday afternoons and Saturdays and/or other suitable times will be compiled for this purpose in co-operation with faculties.
  3. The principle of equivalent educational treatment of day and evening lectures must be maintained at all times. Great sensitivity must be shown by, for instance, not only rescheduling the lectures of evening students - given specifically the sensitivity regarding language and the distribution of day and evening lectures.
  4. In the case of full-time undergraduate courses, no lectures should be cancelled beforehand, even when a power interruption is announced, as power interruptions sometimes do not take place or are of shorter duration than announced. If the power supply is interrupted, it should not be accepted that it will remain off and that subsequent lectures will not take place. Should a power interruption occur in a venue, lecturers and students must wait for at least ten minutes before the lecture is cancelled. Should natural lighting and ventilation make it possible to continue with the lecture, it should be done.
  5. Our point of departure is that no student must be able to use the power interruptions and non-presentation/cancellation of lectures as an argument for having failed modules, for poor academic performance or to negotiate for a change of examination scheduling.

Thirdly we wish to make suggestions regarding teaching and learning strategies (which can be especially useful in case of a power interruption).

  • Emphasise a greater measure of self-activity (self-initiative) on the part of students in this unpredictable environment right from the start.
  • Also emphasise the completion of assessment assignments in good time, so that students cannot use power interruptions as an excuse for late submission. Flexibility will, however, have to be maintained.
  • Place your PowerPoint presentations and any other supplementary learning materials on the web.
  • Use the opportunity to stimulate buzz groups, group work, panel discussions and peer evaluation.

Please also feel free to consult Dr Saretha Brussow, Head: Teaching, Learning and Assessment Division at the Centre for Higher Education Studies and Development, about alternative teaching, learning and assessment strategies. Phone extension x2448 or send an email to sbrussow.rd@ufs.ac.za .

Thank you for your friendly co-operation!

Prof. D. Hay
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept